
Simulink® Real-Time™
User's Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ User's Guide
© COPYRIGHT 1999–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)
September 2017 Online only Revised for Version 6.7 (Release 2017b)
March 2018 Online only Revised for Version 6.8 (Release 2018a)
September 2018 Online only Revised for Version 6.9 (Release 2018b)
March 2019 Online only Revised for Version 6.10 (Release 2019a)
September 2019 Online only Revised for Version 6.11 (Release 2019b)
March 2020 Online only Revised for Version 6.12 (Release 2020a)
September 2020 Online only Revised for Version 7.0 (Release 2020b)
March 2021 Online only Revised for Version 7.1 (Release 2021a)
September 2021 Online only Revised for Version 7.2 (Release 2021b)
March 2022 Online only Revised for Version 8.0 (Release 2022a)

Introduction
1

Simulink Real-Time Product Description . 1-2

Speedgoat Target Computers and I/O Hardware . 1-3

Model Architectures

FPGA Models
2

Speedgoat FPGA Support with HDL Workflow Advisor 2-2
Speedgoat Simulink-Programmable I/O Module Support 2-2
Prepare for FPGA Workflow . 2-2

Interrupt Configuration . 2-4

Functional Mock-up Units and Simulink Real-Time
3

Apply Functional Mock-up Units by Using Simulink Real-Time 3-2

Compile Source Code for Functional Mock-up Units 3-3
Configure Compiler Environment Variables . 3-3
Create the FMU File . 3-3
Implement the FMU Block in Model . 3-4
Compile FMU File That Contains Source Code 3-4

Third-Party Calibration Support
4

Calibrate Real-Time Application . 4-2

v

Contents

Prepare ASAP2 Data Description File . 4-3
Initial Setup . 4-6
Set Up Parameters . 4-7
Set Up Signals . 4-7
Set Up Lookup Tables . 4-8
Generate Data Description File . 4-9

Calibrate Parameters with Vector CANape . 4-10
Prepare Project . 4-10
Prepare Device . 4-10
Configure Signals and Parameters . 4-10
Measure Signals and Calibrate Parameters 4-11

Vector CANape Limitations . 4-12

Troubleshoot Vector CANape Operation . 4-13
What This Issue Means . 4-13
Try This Workaround . 4-13

Calibrate Parameters with ETAS Inca . 4-14
Prepare Database . 4-14
Prepare Project . 4-14
Prepare Workspace . 4-14
Prepare Experiment . 4-14
Configure Signals and Parameters . 4-15
Measure Signals and Calibrate Parameters 4-15

ETAS Inca Limitations . 4-16

Troubleshoot ETAS Inca Operation . 4-17
What This Issue Means . 4-17
Try This Workaround . 4-17

ASAM XIL API Support
5

Install the Simulink Real-Time Support Package for ASAM XIL
Standard . 5-2

Prerequisites for Using ASAM XIL API . 5-2

Classes and Methods of ASAM XIL API . 5-4
MAPort Class . 5-4
ECUMPort Class . 5-5
ECUCPort Class . 5-6
Capture Class . 5-6
CapturingFactory Class . 5-7
MAPORTFactory Class . 5-7
SignalFactory Class . 5-7
SignalGeneratoryFactory Class . 5-9
SignalGenerator Class . 5-10

vi Contents

Real-Time Application Setup

Real-Time Application Environment
6

Select Default Target Computer . 6-2
Select Default Target Computer . 6-2
Command-Line Interface and Target Computer 6-2
Targets Object and Target Computers . 6-2

Set Up Target Computer Ethernet Connection 6-3
Connect Ethernet Cables . 6-3
Configure Ethernet Address . 6-3
Related Ethernet Configuration Topics . 6-4

Target Computer Update, Reboot, and Startup Application 6-5
Update Software . 6-5
Reboot Target Computer . 6-5
Select Startup Application . 6-5

Signals and Parameters
7

Signal Monitoring Basics . 7-3

Monitor Signals by Using Simulink Real-Time Explorer 7-4

Instrument a Stateflow Subsystem . 7-5

Animate Stateflow Charts with Simulink External Mode 7-7

Signal Tracing Basics . 7-8

Export and Import Signals in Instrument by Using Simulink Real-
Time Explorer . 7-9

Save Signals to Disk . 7-9
Get MATLAB Code for Signals . 7-9

Trace Signals by Using Simulink External Mode 7-11
Set Up for External Mode Simulation . 7-11
Set Stop Time and Simulate . 7-12

Data Logging with Simulation Data Inspector (SDI) 7-14

Parameter Tuning and Data Logging . 7-18

Trace or Log Data with the Simulation Data Inspector 7-21
Set Up Model for Logging . 7-21

vii

Set Up Simulation Data Inspector . 7-21
View Simulation Data . 7-22

External Mode Usage . 7-25

Signal Logging Basics . 7-26
How Application is Run Affects Signals Logged 7-26
File Logging and Streaming Workflow . 7-26

Tune Parameters by Using Simulink Real-Time Explorer 7-29
Set Up the Simulation Data Inspector . 7-29
View Initial Parameter Values . 7-30
Modify Parameter Values . 7-30

Tune Parameters by Using MATLAB Language 7-32
Access Parameters by Using Application Object 7-32

Tune Parameters by Using Simulink External Mode 7-34
Tune Parameters by Using Block Diagram 7-34
Tune Parameters by Using Hold Updates and Update All Parameters

. 7-34

Save and Reload Parameters by Using the MATLAB Language 7-36
Save Current Set of Real-Time Application Parameters 7-37
Load Saved Parameters to Real-Time Application 7-37
View or Edit Parameter Values in Parameter Set 7-38
Add or Update Startup Parameter Set for Application 7-39

Tunable Block Parameters and Tunable Global Parameters 7-40
Tunable Parameters . 7-40
Inlined Parameters . 7-41
Tune Global Parameters by Using External Mode 7-41
Tune Global Parameters by Using Simulink Real-Time Explorer . . . 7-41
Tune Global Parameters by Using MATLAB Language 7-41

Tune Inlined Parameters by Using Simulink Real-Time Explorer . . 7-43
Configure Model to Tune Inlined Parameters 7-43
Initial Value . 7-44
Updated Value . 7-46

Tune Inlined Parameters by Using MATLAB Language 7-47
Tune Inlined Parameter . 7-47

Tune Parameter Structures by Using Simulink Real-Time Explorer
. 7-48

Create Parameter Structure . 7-48
Replace Block Parameters with Parameter Structure Fields 7-49
Save and Load Parameter Structure . 7-49
Tune Parameters in a Parameter Structure 7-50

Tune Parameter Structures by Using MATLAB Language 7-51
Create Parameter Structure . 7-51
Save and Load Parameter Structure . 7-52
Replace Block Parameters with Parameter Structure Fields 7-52
Tune Parameters in a Parameter Structure 7-52

viii Contents

Define and Update Inport Data . 7-54
Required Files . 7-54
Map Inport to Use Square Wave . 7-54
Update Inport to Use Sawtooth Wave . 7-56

Define and Update Inport Data by Using MATLAB Language 7-59
Required Files . 7-59
Map Inport to Use Square Wave . 7-59
Update Inport to Use Sawtooth Wave . 7-60

Stimulate Root Inport by Using MATLAB Language 7-62

Inport Data Mapping Limitations . 7-64

Display and Filter Hierarchical Signals and Parameters 7-65
Hierarchical Display . 7-65
Filtered Display . 7-66
Sorted Display . 7-67

Troubleshoot Signals Not Accessible by Name 7-69
What This Issue Means . 7-69
Try This Workaround . 7-69

Troubleshoot Parameters Not Accessible by Name 7-71
What This Issue Means . 7-71
Try This Workaround . 7-71

Troubleshoot Instance-Specific Parameters Not Saved 7-72
What This Issue Means . 7-72
Try This Workaround . 7-72

Internationalization Issues . 7-73

Execution Modes
8

Execution Modes . 8-2

Real-Time Application Execution

Working with the Target Computer Command Line
9

Control Real-Time Application at Target Computer Command Line
. 9-2

ix

Execute Target Computer RTOS Commands at Target Computer
Command Line . 9-3

Tuning Performance
10

CPU Overload . 10-2

Monitor CPU Overload Rate . 10-3

Execution Profiling for Real-Time Applications 10-7

Reduce Build Time for Simulink Real-Time Referenced Models . . 10-13

External Code Integration
11

External Code Integration of Libraries and C/C++ Code with
Simulink Real-Time Models . 11-2

Considerations for Integrating Third-Party Libraries and External Code
into Simulink Real-Time . 11-2

Value of Upgrading Your C/C++ Code for Integration into Simulink
Real-Time . 11-2

Approaches for C/C++ Code Integration into Simulink Real-Time
. 11-3

Build Libraries from Source Code for Simulink Real-Time 11-3
External Code Integration for S-Functions and Simulink Real-Time

. 11-4
Hello World! Example External Code Integration for Simulink Real-

Time . 11-5
Additional C/C++ Project for Simulink Real-Time 11-7

Simulation Data Inspector
12

View Data in the Simulation Data Inspector 12-2
View Logged Data . 12-2
Import Data from the Workspace or a File . 12-3
View Complex Data . 12-5
View String Data . 12-6
View Frame-Based Data . 12-9
View Event-Based Data . 12-9

Import Data from a CSV File into the Simulation Data Inspector
. 12-11

Basic File Format . 12-11

x Contents

Multiple Time Vectors . 12-11
Signal Metadata . 12-12
Import Data from a CSV File . 12-13

Microsoft Excel Import, Export, and Logging Format 12-16
Basic File Format . 12-16
Multiple Time Vectors . 12-16
Signal Metadata . 12-17
User-Defined Data Types . 12-19
Complex, Multidimensional, and Bus Signals 12-21
Function-Call Signals . 12-21
Simulation Parameters . 12-22
Multiple Runs . 12-22

Configure the Simulation Data Inspector . 12-24
Logged Data Size and Location . 12-24
Archive Behavior and Run Limit . 12-25
Incoming Run Names and Location . 12-26
Signal Metadata to Display . 12-27
Signal Selection on the Inspect Pane . 12-27
How Signals Are Aligned for Comparison 12-28
Colors Used to Display Comparison Results 12-28
Signal Grouping . 12-29
Data to Stream from Parallel Simulations 12-29
Options for Saving and Loading Session Files 12-30
Signal Display Units . 12-30

How the Simulation Data Inspector Compares Data 12-32
Signal Alignment . 12-32
Synchronization . 12-33
Interpolation . 12-34
Tolerance Specification . 12-34
Limitations . 12-36

Save and Share Simulation Data Inspector Data and Views 12-37
Save and Load Simulation Data Inspector Sessions 12-37
Share Simulation Data Inspector Views . 12-38
Share Simulation Data Inspector Plots . 12-38
Create a Simulation Data Inspector Report 12-39
Export Data to the Workspace or a File . 12-40
Export Video Signal to an MP4 File . 12-41

Inspect and Compare Data Programmatically 12-43
Create a Run and View the Data . 12-43
Compare Two Signals in the Same Run . 12-44
Compare Runs with Global Tolerance . 12-45
Analyze Simulation Data Using Signal Tolerances 12-46

Limit the Size of Logged Data . 12-48
Limit the Number of Runs Retained in the Simulation Data Inspector

Archive . 12-48
Specify a Minimum Disk Space Requirement or Maximum Size for

Logged Data . 12-48
View Data Only During Simulation . 12-49
Reduce the Number of Data Points Logged from Simulation 12-49

xi

Execution with MATLAB Scripts

Real-Time Application Objects and Options in the MATLAB
Interface

13
Target and Application Objects . 13-2

Control Real-Time Application by Using Objects 13-2
Use Real-Time Application Object Functions 13-3

Simulink Real-Time Instruments and Instrument Panel
Apps

14
Add Instruments to Real-Time Application from Simulink Model

. 14-2

Instrumentation Apps for Real-Time Applications 14-5

Create App Designer Instrument Panels by Using App Generator
. 14-6

Create App Designer Instrument Panels by Using Simulink Real-Time
Components . 14-9

Create Standalone Instrument Panel App by Using Application
Compiler . 14-13

Automated Test with Simulink Test
15

Test Real-Time Application in Simulink Test 15-2

Examples

Simulink Real-Time Examples
16

Parameter Tuning and Data Logging . 16-2

xii Contents

Tune Decimation for File Log Data Without Model Rebuild 16-5

Concurrent Execution on Simulink® Real-Time™ 16-11

Add App Designer App to Inverted Pendulum Model 16-18

Basic App Designer App for Real-Time Application Interface 16-22

Connect Triggered Subsystem by Using Thread Trigger 16-25

EtherCAT® Protocol with Beckhoff® Analog IO Slave Devices
EL3062 and EL4002 . 16-26

EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices EL1004
and EL2004 . 16-31

EtherCAT® Protocol Motor Velocity Control with Accelnet™ Drive
. 16-36

EtherCAT® Protocol Motor Position Control with Accelnet™ Drive
. 16-41

Generate ENI Files for EtherCAT® Devices 16-46

EtherCAT® Protocol Detect Network Failure and Reset 16-52

EtherCAT® Protocol Sequenced Writing SoE Slave Configuration
Variables . 16-57

EtherCAT® Protocol Sequenced Writing CoE Slave Configuration
Variables . 16-62

Simple ASCII Encoding/Decoding Loopback Test (With Baseboard
Blocks) . 16-67

ASCII Encoding/Decoding Loopback Test . 16-68

ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)
. 16-69

ASCII Encoding/Decoding Resync Loopback Test 16-71

ASCII Encoding/Decoding Resync Loopback Test (With Baseboard
Blocks) . 16-72

Binary Encoding/Decoding Loopback Test 16-74

Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)
. 16-75

Binary Encoding/Decoding Resync Loopback Test 16-77

Binary Encoding/Decoding Resync Loopback Test (With Baseboard
Blocks) . 16-78

xiii

Target to Development Computer Communication by Using TCP
. 16-80

Target to Host Transmission by Using UDP 16-83

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks
. 16-87

Apply Simulink Real-Time Model Template to Create Real-Time
Application . 16-92

Insert Event into Execution Profiling Stream 16-93

Control Real-Time Application by Using C# Code 16-95

Run Real-Time Application by Using Python Script 16-97

Hello World! Example External Code Integration for Simulink Real-
Time . 16-101

Control Color of Lamp on Instrument Panel 16-104

Configure Input and Output Ports for Bit Packing and Unpacking
. 16-107

Run Real-Time Simulation of Permanent Magnet Synchronous Motor
. 16-110

Apply Persistent Variables in Real-Time Applications 16-116

Troubleshooting
17

Troubleshooting Basics . 17-2

Troubleshoot Missing Real-Time Tab . 17-4
What This Issue Means . 17-4
Try This Workaround . 17-4

Troubleshoot Communication Failure Through Firewall (Windows) . . . 17-5
What This Issue Means . 17-5
Try These Workarounds . 17-6

Troubleshoot Cannot Load Shared Object on Target Computer 17-13
What This Issue Means . 17-13
Try This Workaround . 17-13

Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and
Multidimensional Signals . 17-15

What This Issue Means . 17-15
Try This Workaround . 17-15

xiv Contents

Troubleshoot Signal Data Logging from Inport in Referenced Model . 17-17
What This Issue Means . 17-17
Try This Workaround . 17-18

Troubleshoot Signal Data Logging from Inport in Referenced Model in
Test Harness . 17-19

What This Issue Means . 17-19
Try This Workaround . 17-19

Troubleshoot Signal Data Logging from Send and Receive Blocks 17-21
What This Issue Means . 17-21
Try This Workaround . 17-21

Troubleshoot Signals for Streaming or File Logging 17-22
What This Issue Means . 17-22
Try These Workarounds . 17-22

Troubleshoot Folder Names with Spaces or Special Characters Halt Model
Builds . 17-23

What This Issue Means . 17-23
Try This Workaround . 17-23

Troubleshoot Model Links to Static Libraries or Shared Objects 17-24
What This Issue Means . 17-24
Try This Workaround . 17-24

Troubleshoot Build Error for Accelerator Mode 17-26
What This Issue Means . 17-26
Try This Workaround . 17-26

Troubleshoot Long Build Times for Real-Time Application 17-27
What This Issue Means . 17-27
Try This Workaround . 17-27

Troubleshoot Working with Persistent Variables 17-29
What This Issue Means . 17-29
Try This Workaround . 17-29

Troubleshoot Unsatisfactory Real-Time Performance 17-30
What This Issue Means . 17-30
Try This Workaround . 17-30

Troubleshoot Overloaded CPU from Executing Real-Time Application
. 17-32

What This Issue Means . 17-32
Try This Workaround . 17-32

Troubleshoot Gaps in Streamed Data . 17-34
What This Issue Means . 17-34
Try This Workaround . 17-34

Find Simulink Real-Time Support . 17-35

Install Simulink Real-Time Software Updates . 17-36

xv

Introduction

1

Simulink Real-Time Product Description
Perform rapid control prototyping and hardware-in-the-loop testing

Simulink Real-Time and Speedgoat® take you from simulation to rapid control prototyping (RCP) and
hardware-in-the-loop (HIL) testing in a single click. The products connect to electronic control units
and physical systems with MATLAB® and Simulink.

You can create, control, and instrument real-time applications that run on Speedgoat real-time target
computers directly from your Simulink model or with the MATLAB API and App Designer. You can
simulate and test control designs and the dynamics of electric motors, electric vehicles and
powertrains, wind turbines, power converters, battery management systems, robots and
manipulators, autonomous systems, and other devices.

1 Introduction

1-2

Speedgoat Target Computers and I/O Hardware
Speedgoat target computers are real-time computers fitted with a set of I/O hardware, Simulink
programmable FPGAs, and communication protocol support. Speedgoat target computers are
optimized for use with Simulink Real-Time and fully support the HDL Coder™ workflow.

Connect a development computer to a Speedgoat target computer that meets your requirements:
form factor, performance, I/O interface, and protocol interface. Speedgoat target computer systems
come with:

• I/O and protocol interfaces, an Intel® CPU, and optional FPGA hardware, configured and ready to
use

• I/O cables, terminal boards, Simulink driver blocks, documentation, and a loopback wiring harness
that facilitates acceptance testing for each I/O module

• The Simulink Real-Time RTOS preinstalled on the target computer

Hardware-In-the-Loop (HIL) Simulators and Rugged Units for Controls (RCP), DSP, and
Vision Prototyping

 Speedgoat Target Computers and I/O Hardware

1-3

Model Architectures

5

FPGA Models

• “Speedgoat FPGA Support with HDL Workflow Advisor” on page 2-2
• “Interrupt Configuration” on page 2-4

2

Speedgoat FPGA Support with HDL Workflow Advisor
Use Simulink Real-Time and HDL Coder to implement Simulink algorithms and configure I/O
functionality on Speedgoat Simulink-Programmable I/O modules. For an example that shows the
development workflow for FPGA I/O modules, see “FPGA Programming and Configuration on
Speedgoat Simulink-Programmable I/O Modules” (HDL Coder).

When you open the HDL Workflow Advisor in HDL Coder and run the Simulink Real-Time FPGA
I/O workflow, you generate a Simulink Real-Time interface subsystem. The subsystem mask controls
the block parameters. Do not edit the parameters directly. The FPGA I/O board block descriptions are
for informational purposes only.

Speedgoat Simulink-Programmable I/O Module Support
Speedgoat Simulink-Programmable I/O modules are part of Speedgoat target computer systems. To
run the Simulink Real-Time FPGA I/O workflow, install the Speedgoat I/O Blockset and the
Speedgoat HDL Coder Integration Packages. You can then choose the Target platform and run the
workflow to generate a Simulink Real-Time interface subsystem. To see the documentation for the
integration packages, enter this command at the MATLAB command prompt.

speedgoat.hdlc.doc

To learn about See links
The integration packages and how you can install
them.

See Speedgoat - HDL Coder Integration
Packages.

Speedgoat I/O modules that are supported with
the HDL Workflow Advisor.

See Speedgoat Real-Time FPGA Application
Support from HDL Coder.

Applications and use cases See Common Use Cases and Applications.
Supported interfaces for various types of I/O
connectivity and protocols as well as fundamental
functionality such as PCIe read/write and DMA.

See Supported Interfaces.

Provided examples for all supported I/O modules
and functionality

See Speedgoat I/O Examples.

Prepare for FPGA Workflow
To work with FPGAs in the Simulink Real-Time environment, install:

• HDL Coder and Simulink Real-Time.
• Xilinx® design tools with specific tool and version listed in “HDL Language Support and Supported

Third-Party Tools and Hardware” (HDL Coder). You must also set up the path to the tool by using
the hdlsetuptoolpath function.

• Speedgoat I/O Blockset and the Speedgoat HDL Coder Integration Packages.
• Speedgoat FPGA I/O module in the Speedgoat target machine.

You can use the workflow in HDL Coder to generate HDL code for your FPGA target device.

2 FPGA Models

2-2

https://www.speedgoat.com/help/hdlcoder/page/index
https://www.speedgoat.com/help/hdlcoder/page/index
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.speedgoat.com/help/hdlcoder/page/refentry_usecases
https://www.speedgoat.com/help/hdlcoder/page/refentry_interfaces
https://www.speedgoat.com/help/hdlcoder/page/refentry_example

See Also

Related Examples
• “FPGA Programming and Configuration on Speedgoat Simulink-Programmable I/O Modules”

(HDL Coder)

More About
• “HDL Language Support and Supported Third-Party Tools and Hardware” (HDL Coder)
• “Tool Setup” (HDL Coder)

External Websites
• www.speedgoat.com

 Speedgoat FPGA Support with HDL Workflow Advisor

2-3

https://www.speedgoat.com

Interrupt Configuration
Simulink Real-Time software schedules the real-time application by using either the internal timer of
the Speedgoat target machine (default) or an interrupt from an I/O board. You can use your
Speedgoat FPGA board to generate an interrupt. You can:

• Schedule execution of the real-time application based on this interrupt (synchronous execution).
For this method, you must generate the interrupt periodically.

• Execute a designated subsystem in your real-time application (asynchronous execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and Simulink Real-Time domain
models. For more information, see “Speedgoat Target Computers and I/O Hardware” on page 1-3.

See Also

2 FPGA Models

2-4

Functional Mock-up Units and Simulink
Real-Time

• “Apply Functional Mock-up Units by Using Simulink Real-Time” on page 3-2
• “Compile Source Code for Functional Mock-up Units” on page 3-3

3

Apply Functional Mock-up Units by Using Simulink Real-Time
After you create a model that contains an FMU block, you can build and download the model to a
target computer by using Simulink Real-Time. These limitations apply:

• Simulink Real-Time supports FMU blocks for Co-Simulation mode. Simulink Real-Time does not
support FMU blocks for Model Exchange mode.

• Simulink Real-Time does not support FMU blocks within a referenced model. FMU blocks must be
at the top level of the model.

• Simulink Real-Time generates a mask dialog box that contains both numeric-valued and string-
valued parameters. Simulink Real-Time generates code for only numeric- valued parameters.

To convert a Simulink model that contains FMU blocks to a Simulink Real-Time model, set the model
configuration parameters to values compatible with real-time execution:

• In the Code Generation pane, set System target file to slrealtime.tlc.
• In the Solver pane:

• Set Type to Fixed-step.
• Set Fixed-step size to a step size compatible with the real-time requirements of your model.

• Generate a shared object SO file by using the QNX® Neutrino® tools for the FMU. For more
information, see “Create the FMU File” on page 3-3.

You can then build and download the model to a target computer and run the real-time application.
This process loads the required FMU binary files on the target computer. For more information about
creating the FMU files, see “Compile Source Code for Functional Mock-up Units” on page 3-3.

Note Note: Simulink Real-Time supports FMU blocks that comply with FMU v1.0. Blocks complying
with FMU v2.0 are not supported.

To open an example model that contains FMU blocks running in Simulink Real-Time, in the MATLAB
Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_vanderpol'))

See Also
FMU

More About
• “Import FMUs”

External Websites
• https://fmi-standard.org/

3 Functional Mock-up Units and Simulink Real-Time

3-2

https://fmi-standard.org/

Compile Source Code for Functional Mock-up Units
When you build a model that includes FMU blocks, you must compile the FMU source code by using
the QNX Neutrino compiler qcc or q++. This compiler creates shared object SO files that you include
in the FMU. This process makes sure that the FMU contains the code to run on a Simulink Real-Time
target computer. For more information, see “Apply Functional Mock-up Units by Using Simulink Real-
Time” on page 3-2.

Configure Compiler Environment Variables
The support package for the target computer includes the QNX Neutrino C/C++ compiler qcc or q+
+. Before using the compiler to generate the FMU file, configure the compiler environment variables.

Open a Windows cmd window and change folders to the root folder for the Simulink Real-Time Target
Support Package. If you have changed the default folder for MATLAB support packages, adjust this
command to match your custom location. At the Windows command prompt, type:

C:
cd C:\ProgramData\MATLAB\SupportPackages\<release>\toolbox\slrealtime\target\supportpackage\qnx710

To set the Windows environment variables that are required to use the QNX Neutrino compiler from
the command line, run the batch file qnxsdp-env.bat. At the Windows command prompt, type:

qnxsdp-env.bat

Ensure that the qcc compiler is ready to use. At the Windows prompt, type:

which qcc

The command returns:

C:/ProgramData/MATLAB/SupportPackages/<release>/toolbox/slrealtime/target/supportpackage/qnx710/host/win64/x86_64/usr/bin/qcc.EXE

Create the FMU File
The FMU file contains a hierarchy of files and folders. A set of these is provided in this example. The
example shows how to create the shared object file for a single source file that is linked in the real-
time application that runs on the target computer.

To view the files for this example, in the MATLAB Command Window, type:

cd(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_fmu_work'))

To open the model for this example, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_vanderpol'))

The example FMU file vanDerPol_slrt.fmu contains this set of folders:

C:\work\my_fmu_work\
C:\work\my_fmu_work\binaries\
C:\work\my_fmu_work\binaries\slrt_x64
C:\work\my_fmu_work\binaries\win64

 Compile Source Code for Functional Mock-up Units

3-3

C:\work\my_fmu_work\documentation
C:\work\my_fmu_work\resources
C:\work\my_fmu_work\sources\

The example has FMU source files in the sources folder. This example uses files: fmuTemplate.c,
fmuTemplate.h, vanDerPol.c

The example has a dynamically linked library file from the source files that was created by using a
Window-based compiler. This file is in the win64 folder. This example uses file: vanDerPol.dll

To compile the sources in the example by using qcc, copy the files for the FMU from folder matlab/
slrealtime/examples/slrt_ex_fmu_work to folder C:\work\my_fmu_work.

In a Windows cmd window, change the current folder to be the location of your source files. At the
Windows command prompt, type:

cd C:\work\my_fmu_work\sources

To generate the QNX Neutrino shared object SO file, the example compiles the sources by using the -
Vgcc_ntox86_64 flag. At the Windows command prompt, type:

qcc -Vgcc_ntox86_64 -shared -o ../binaries/slrt_x64/vanDerPol.so -fPIC -DFMI_COSIMULATION -IC:/PROGRA~1/MATLAB/R2021b_bash/rtw/c/src/rapid/fmu/fmi1 vanDerPol.c

Note The QNX Neutrino compiler does not support Windows long file names (for example, paths with
space characters) for the library search switch -I. To work around this limitation, you can install
MATLAB in a path without spaces (for example, C:\MATLAB) or you can use the DOS 8.3 path in the
compiler command. To get the 8.3 folder names, you can use the dir /x command in a Windows cmd
window.

To generate the functional mockup unit FMU file that contains the QNX Neutrino shared object file,
the example archives the folders and files. Use the FMU extension for the archive file. At the
Windows command prompt, type:

cd ..
zip -r vanDerPol.fmu *

Implement the FMU Block in Model
To implement the vanDerPol block in the Simulink model by using the FMU, specify the FMU name
for the block. Open the model slrt_ex_vanderpol, double-click the FMU block vanDerPol, and
select the vanDerPol.fmu file for the FMU name block parameter.

Build the model, load the real-time application on the target computer, and run the real-time
application.

Compile FMU File That Contains Source Code
The slrealtime.fmu.compileFMUSources function compiles an FMU file that contains source
code. The process outputs an FMU file and Simulink Real-Time binary file in the same folder as the
input FMU file and appends an _slrt suffix to the output file name. This example selects an FMU file
to compile and overwrites previous compiler output.

% create variable to provide path and file name
my_file = ['C:\work\my_fmu_work\','vanDerPol.fmu']

3 Functional Mock-up Units and Simulink Real-Time

3-4

% compile the FMU file and overwrite previous output
slrealtime.fmu.compileFMUSources(my_file,'overwriteBinary',true)

See Also
FMU | slrealtime.fmu.compileFMUSources

More About
• “Import FMUs”

External Websites
• https://fmi-standard.org/

 Compile Source Code for Functional Mock-up Units

3-5

https://fmi-standard.org/

Third-Party Calibration Support

• “Calibrate Real-Time Application” on page 4-2
• “Prepare ASAP2 Data Description File” on page 4-3
• “Calibrate Parameters with Vector CANape” on page 4-10
• “Vector CANape Limitations” on page 4-12
• “Troubleshoot Vector CANape Operation” on page 4-13
• “Calibrate Parameters with ETAS Inca” on page 4-14
• “ETAS Inca Limitations” on page 4-16
• “Troubleshoot ETAS Inca Operation” on page 4-17

4

Calibrate Real-Time Application
Simulink Real-Time supports interaction with third-party calibration tools such as Vector CANape
(www.vector.com) and ETAS Inca (www.etas.com). Use these tools for:

• Parameter display and tuning
• Calibration data saving, restoring, and swapping by page
• Signal value streaming

These tools run in XCP master mode. Simulink Real-Time emulates an electronic control unit (ECU)
operating in XCP slave mode. To enable a real-time application to work with the third-party software:

• Configure the third-party software to communicate with the real-time application as an ECU.
• Provide a standard TCP/IP physical layer between the development and target computers.

Simulink Real-Time supports third-party calibration software only through UDP protocol.
• Generate a real-time application with signal and parameter attributes that are consistent with A2L

(ASAP2) file generation. See “Export ASAP2 File for Data Measurement and Calibration”.
• Use the build process to generate model.a2l (ASAP2) files that the software can load into its

database. The generated file contains signal and parameter access information for the real-time
application and XCP-related sections and memory addresses.

If your model includes referenced models, the build creates a model.a2l file for the real-time
application and separate refmodel.a2l files for each referenced model.

Note You cannot configure third-party software for calibration with only the A2L files that Simulink
Coder™ generates. These files do not contain XCP-related sections and memory addresses. Simulink
Real-Time adds this information during the build process.

See Also

More About
• “Export ASAP2 File for Data Measurement and Calibration”
• “Prepare ASAP2 Data Description File” on page 4-3
• “Calibrate Parameters with Vector CANape” on page 4-10
• “Calibrate Parameters with ETAS Inca” on page 4-14
• “XCP Master Mode”

External Websites
• www.vector.com
• www.etas.com

4 Third-Party Calibration Support

4-2

https://www.vector.com
https://www.etas.com
https://www.vector.com
https://www.etas.com

Prepare ASAP2 Data Description File
This example shows how to configure a Simulink Real-Time model so that the build generates an
ASAP2 (A2L) data description file for the real-time application. The real-time application models a
damped oscillator that feeds into 1-D and 2-D lookup tables, which invert and rescale the input
waveform.

This example uses model slrt_ex_osc_cal. To open the model, in the MATLAB Command Window,
type:
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_cal'))

 Prepare ASAP2 Data Description File

4-3

4 Third-Party Calibration Support

4-4

 Prepare ASAP2 Data Description File

4-5

Calibration of parameters reduces the ringing in signals DampedOsc, L_1D, and L_2D.

Initial Setup
Open the model and check for model data.

1 Open slrt_ex_osc_cal
open_system(fullfile(matlabroot,'toolbox','slrealtime', ...
'examples', 'slrt_ex_osc_cal'))

The Model Workspace variables contain these functions:

• Kg — Parameter object for the Gain1 block
• DampedOsc, SignalGenerator, L_1D, L_2D — Signal objects for output signals
• LUT_1D_obj, LUT_2D_obj — 1-D and 2-D lookup tables data respectively
• SignalGenerator — Test input data

2 Set the Default parameter behavior configuration parameter to Tunable.

4 Third-Party Calibration Support

4-6

3 In the Code Mappings Editor – C in Data Defaults, specify the storage class as
PageSwitching for Model parameters under Parameters.

Note The model default setting for parameters sets the storage class as PageSwitching.

Set Up Parameters
Set up parameter tuning by using Simulink parameter objects.

1 In slrt_ex_osc_cal, on the Modeling tab, click Design > Model Explorer .
2 Select Model Workspace in the Model Hierarchy pane.
3 Make sure that the Kg parameter object exists and has these properties:

• Value — 400
• Data type — double

4 If the parameter object does not exist, add it. On the toolbar, click the Add Simulink Parameter
button .

5 Open slrt_ex_osc_cal/Gain1.
6 Make sure that you have set the Gain value to the parameter object Kg.

Set Up Signals
As a best practice, set up signal viewing by using Simulink signal objects.

1 In slrt_ex_osc_cal, on the Modeling tab, click Design > Model Explorer .

 Prepare ASAP2 Data Description File

4-7

2 Select Model Workspace in the Model Hierarchy pane.
3 Make sure that the DampedOsc signal object exists and has these properties:

• Minimum — −10
• Maximum — 10
• Data type — double

4 Make sure that the SignalGenerator signal object exists and has these properties:

• Minimum — −10
• Maximum — 10
• Data type — double

5 Make sure that the L_1D signal object exists and has these properties:

• Minimum — −15
• Maximum — 15
• Data type — double

6 Make sure that the L_2D signal object exists and has these properties:

• Minimum — −15
• Maximum — 15
• Data type — double

7 If a signal does not exist, add it. On the toolbar, click the Add Simulink Signal button .
8 For each signal, open its Properties dialog box.
9 Make sure that you selected the Signal name must resolve to Simulink signal object and the

Test point check boxes.

Set Up Lookup Tables
The example model contains 1-D and 2-D lookup tables.

1 Open the block parameters for the 1-D Lookup Table block.
2 In the Table and Breakpoints pane, verify these settings:

• Number of table dimensions — 1
• Data specification — Lookup table object
• Name — LUT_1D_obj

3 Open the block parameters for the 2-D Lookup Table block.
4 In the Table and Breakpoints pane, check these settings:

• Number of table dimensions — 2
• Data specification — Lookup table object
• Name — LUT_2D_obj

To view the contents of the lookup tables, click Edit table and breakpoints, and then click Plot >
Mesh.

4 Third-Party Calibration Support

4-8

Generate Data Description File
1 On the REAL-TIME tab, select RUN ON TARGET > Build Application. The build produces a

file named slrt_ex_osc_cal_slrt.mldatx in the working folder containing A2L file.
2 To retrieve the A2L file and update target IP address in the A2L file, use extractASAP2

command.
3 Connect to the target by using a third-party calibration tool.

See Also
n-D Lookup Table

More About
• “Calibrate Parameters with Vector CANape” on page 4-10
• “Calibrate Parameters with ETAS Inca” on page 4-14

External Websites
• www.vector.com
• www.etas.com

 Prepare ASAP2 Data Description File

4-9

https://www.vector.com
https://www.etas.com

Calibrate Parameters with Vector CANape
This example shows how to view signals and tune parameters by using Vector CANape. You must
have already completed the steps in “Prepare ASAP2 Data Description File” on page 4-3.

You also must be familiar with the Vector CANape user interface. For information about the user
interface, see the vendor documentation (www.vector.com).

Prepare Project
1 Build and download the real-time application slrt_ex_osc_cal.
2 Start the real-time application by selecting REAL-TIME > RUN ON TARGET > Start

Application.
3 Disconnect the connection from MATLAB:

tg = slrealtime
disconnect(tg)

You can now connect to third-party calibration tools.
4 Open Vector CANape.
5 Create a Vector CANape project with project name slrt_ex_osc_cal.

Accept the default folder.

Prepare Device
1 From the extracted slrt_ex_osc_cal.a2l, create an XCP device named

slrt_ex_osc_cal_slrt.

Do not configure dataset management.
2 Select your local computer Ethernet adapter as the Ethernet channel.
3 Accept the remaining defaults.
4 Upload data from the device.

Configure Signals and Parameters
1 Open device slrt_ex_osc_cal_slrt, and then open slrt_ex_osc_cal.a2l.
2 Add signals DampedOsc, SignalGenerator, L_1D, and L_2D in separate display windows.
3 To make the waveform easier to evaluate, set the time and y-axis scaling.

For example, try the following settings for DampedOsc:

• y-axis min home value — –25
• y-axis max home value — 25
• Min home time-axis value — 0 s
• Max home time-axis value — 0.1 s
• Time duration — 0.1 s

4 Third-Party Calibration Support

4-10

https://www.vector.com

4 Open the measurement list.
5 To set the required sample time for a signal, open the measurement properties for the signal.

Select the required sample time from the measurement mode list.

The default sample time is the base sample time.
6 Add a graphic control on parameter Kg.

Measure Signals and Calibrate Parameters
1 Start the Vector CANape measurement.
2 To shorten the ring time on DampedOsc, L_1D, and L_2D, set parameter Kg to 800.
3 As required, toggle between calibration RAM active and inactive.

When using the Run on Target button on the Simulink Editor Real-Time tab to run the simulation,
there is a time lag of a couple of seconds between the start of the real-time application on the target
computer and the connect model operation on the development computer. If you are examining
signals at or very close to application start, consider using the step-by-step approach to connect
model and then using an SSH connection (for example, using PuTTY) start the real-time application.
For more information, see “Execute Real-Time Application in Simulink External Mode by Using Step-
by-Step Commands” and “Execute Target Computer RTOS Commands at Target Computer Command
Line” on page 9-3.

See Also

More About
• “Prepare ASAP2 Data Description File” on page 4-3
• “Vector CANape Limitations” on page 4-12
• “Troubleshoot Vector CANape Operation” on page 4-13

External Websites
• www.vector.com

 Calibrate Parameters with Vector CANape

4-11

https://www.vector.com

Vector CANape Limitations
For Vector CANape, the Simulink Real-Time software does not support:

• Starting and stopping the real-time application by using Vector CANape commands.

To start and stop the real-time application on the target computer, use the Simulink Real-Time
start and stop commands, for example start(tg), stop(tg).

• Vector CANape flash programming.
• Multiple simultaneous Vector CANape connections to a single target computer.

Event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows the real-time
application. The amount of data that you can observe depends on the model sample time and the
speed of the target computer. It is possible to overload the target computer CPU to where data
integrity is reduced.

• You can trace only signals and scalar parameters. You cannot trace vector parameters.

4 Third-Party Calibration Support

4-12

Troubleshoot Vector CANape Operation
My third-party calibration tool (Vector CANape) is not working with the real-time application.

What This Issue Means
You can use the Vector CANape tool to view signals and tune parameters in the real-time application.
For more information, see the steps in “Prepare ASAP2 Data Description File” on page 4-3. In
addition to the limitations listed in “Vector CANape Limitations” on page 4-12, there are various
issues that can prevent the operation of this tool.

Try This Workaround
For Vector CANape tool issues, try these workarounds.

Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS Inca) are
mutually exclusive. If you use the Simulation Data Inspector to view signal data, you cannot use the
calibration tools. If you use the calibration tools, you cannot use the Simulation Data Inspector to
view signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it to the address
stored in the ASAP2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the calibration
tool with the new version of the file. The ASAP2 file is valid only until the next time that you build the
application.

See Also

More About
• “Prepare ASAP2 Data Description File” on page 4-3
• “Vector CANape Limitations” on page 4-12

External Websites
• MathWorks Help Center website
• www.vector.com

 Troubleshoot Vector CANape Operation

4-13

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.vector.com

Calibrate Parameters with ETAS Inca
This example shows how to view signals and tune parameters by using ETAS Inca. You must have
already completed the steps in “Prepare ASAP2 Data Description File” on page 4-3.

You also must be familiar with the ETAS Inca user interface. For information about the user interface,
see the vendor documentation (www.etas.com).

Prepare Database
1 Build and download real-time application slrt_ex_osc_cal.
2 Start the real-time application by selecting REAL-TIME > RUN ON TARGET > Start

Application.
3 Disconnect the connection from MATLAB:

tg = slrealtime
disconnect(tg)

You can then connect to third-party calibration tools.
4 Open ETAS Inca.
5 Add an ETAS Inca database by using the folder named SLRTDatabase.
6 Add subfolders named Experiment, Project, and Workspace.

Prepare Project
1 Under folder Project, add an ECU project.
2 When prompted, select A2L file slrt_ex_osc_cal.a2l, which is extracted from the project file.

Ignore the prompt for a HEX file.

If you change and rebuild the real-time application, delete the ECU project and recreate it with
the new A2L file.

Prepare Workspace
1 Under folder Workspace, add workspace slrt_ex_osc_cal_wksp.
2 Add project slrt_ex_osc_cal_slrt to workspace slrt_ex_osc_cal_wksp.
3 When prompted, add an Ethernet system XCP device to the workspace.
4 Configure the XCP device and initialize it. Autoconfigure the ETAS network.
5 To upload data from the device hardware, use enhanced operations on memory pages.

Data is uploaded from the real-time application on the target computer.

Prepare Experiment
1 Under folder Experiment, add experiment slrt_ex_osc_cal_exp.
2 Add experiment slrt_ex_osc_cal_exp to workspace slrt_ex_osc_cal_wksp.

4 Third-Party Calibration Support

4-14

https://www.etas.com

Configure Signals and Parameters
1 Start experiment slrt_ex_osc_cal_exp.
2 To create graphic controls for the variables, add variables Kg, DampedOsc, SignalGenerator,

L_1D, and L_2D.
3 Add YT oscilloscopes for DampedOsc, SignalGenerator, L_1D, and L_2D.
4 For each signal, set the sample time to the base sample time of the real-time application (250

µs).

Measure Signals and Calibrate Parameters
1 Start the ETAS Inca measurement.
2 To shorten the ring time on DampedOsc, L_1D, and L_2D, set parameter Kg to 800.
3 As required, toggle between the reference page and the working page.

When using the Run on Target button on the Simulink Editor Real-Time tab to run the simulation,
there is a time lag of a couple of seconds between the start of the real-time application on the target
computer and the connect model operation on the development computer. If you are examining
signals at or very close to application start, consider using the step-by-step approach to connect
model and then using an SSH connection (for example, using PuTTY) start the real-time application.
For more information, see “Execute Real-Time Application in Simulink External Mode by Using Step-
by-Step Commands” and “Execute Target Computer RTOS Commands at Target Computer Command
Line” on page 9-3.

See Also

More About
• “Prepare ASAP2 Data Description File” on page 4-3
• “ETAS Inca Limitations” on page 4-16
• “Troubleshoot ETAS Inca Operation” on page 4-17

External Websites
• www.etas.com

 Calibrate Parameters with ETAS Inca

4-15

https://www.etas.com

ETAS Inca Limitations
For ETAS Inca, the Simulink Real-Time software does not support:

• Starting and stopping the real-time application by using ETAS Inca commands.

To start and stop the real-time application on the target computer, use the Simulink Real-Time
start and stop commands, for example, start(tg), stop(tg).

• ETAS Inca flash programming.
• Multiple simultaneous ETAS Inca connections to a single target computer.
• Tunability of parameters with ExportedGlobal storage class when the model has other

parameters with PageSwitching storage class. As a work around you can:

• Place all the parameters you want to tune in model workspace. Or
• Change the default mapping for storage class from PageSwitching to default. The

PageSwitching storage class is not used, and the page switching functionality is not
available.

Event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows the real-time
application. The amount of data that you can observe depends on the model sample time and the
speed of the target computer. It is possible to overload the target computer CPU to where data
integrity is reduced.

• You can trace only signals and scalar parameters. You cannot trace vector parameters.

4 Third-Party Calibration Support

4-16

Troubleshoot ETAS Inca Operation
Investigate issues that can occur when ETAS Inca controls a real-time application.

My third-party calibration tool (ETAS Inca) is not working with the real-time application.

What This Issue Means
You can use the ETAS Inca tool to view signals and tune parameters in the real-time application. For
more information, see the steps in “Prepare ASAP2 Data Description File” on page 4-3. In addition to
the limitations listed in “ETAS Inca Limitations” on page 4-16, there are various issues that can
prevent the operation of this tool.

Try This Workaround
For ETAS Inca tool issues, try these workarounds.

Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS Inca) are
mutually exclusive. If you use the Simulation Data Inspector to view signal data, you cannot use the
calibration tools. If you use the calibration tools, you cannot use the Simulation Data Inspector to
view signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it to the address
stored in the ASAP2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the calibration
tool with the new version of the file. The ASAP2 file is valid only until the next time that you build the
application.

Cannot Disable Freeze Mode

Remove the dataset file from the target file system and reset the parameters to the original values
specified in your model. The dataset file is named flashdata_model_name.dat.

Transport Layer Failure

When a transport layer failure occurs, ETAS Inca can display this message:

ERROR: Transport Layer Failure, Inconsistent MsgCounter

This error appears in ETAS Inca when the incorrect setting is used for 'Counter Consistency
Mode'. Make sure that the 'Counter Consistency Mode' is set to 'one counter for all
CTOs+DTOs' in the hardware settings for your experiment.

 Troubleshoot ETAS Inca Operation

4-17

See Also

More About
• “Prepare ASAP2 Data Description File” on page 4-3
• “ETAS Inca Limitations” on page 4-16
• “Troubleshoot ETAS Inca Operation” on page 4-17

External Websites
• MathWorks Help Center website
• www.etas.com

4 Third-Party Calibration Support

4-18

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.etas.com

ASAM XIL API Support

• “Install the Simulink Real-Time Support Package for ASAM XIL Standard” on page 5-2
• “Classes and Methods of ASAM XIL API” on page 5-4

5

Install the Simulink Real-Time Support Package for ASAM XIL
Standard

Simulink Real-Time supports a subset of the ASAM XIL API. This API enables you to define ports for
test cases. To use these APIs in Simulink Real-Time, install the Simulink Real-Time XIL API support
package by using the Add On Explorer. For a list of support ASAM XIL APIs in the support package,
see “Classes and Methods of ASAM XIL API” on page 5-4.

Prerequisites for Using ASAM XIL API
To enable support for the ASAM XIL API, install the Simulink Real-Time XIL API support package.
This support package implements the ASAM XIL API standard for Simulink Real-Time target
computers.

The Simulink Real-Time Support Package for ASAM XIL Standard implements the ASAM XIL standard
API for Simulink Real-Time target computers. Using this C# API, you can run real-time hardware-in-
the-loop (HIL) tests on a Simulink Real-Time target computer by using test cases created from any
test automation software with the XIL framework. Also, you can use the support package to develop a
custom XIL test framework for Simulink Real-Time.

1 In MATLAB, select Home > Add-Ons > Get Add-Ons and install the Simulink Real-Time XIL
API support package.

2 After support package installation, verify that the manifest file MathWorksXILServer.imf that
is located under C:\ProgramData\ASAM\XIL\Implementation provides the correct Assembly
path.

3 Register MATLAB as the automation server. Share the MATLAB session. In the MATLAB
Command Window, type:

comserver('register','User','current');
enableservice('AutomationServer', true);

4 Build the model. The real-time application MLDATX file is required for setting up test cases.
5 Create a configuration file for the test bench by using the createPortConfigureFile function.

After installing the support package, the PDF documentation for the support package is available in
the support package folder.

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
 'toolbox','slrealtime','xil'))

See Also
createPortConfigureFile

Related Examples
• “Control Real-Time Application by Using C# Code” on page 16-95

More About
• “Classes and Methods of ASAM XIL API” on page 5-4

5 ASAM XIL API Support

5-2

https://www.asam.net/standards/detail/xil/

External Websites
• ASAM XIL

 Install the Simulink Real-Time Support Package for ASAM XIL Standard

5-3

https://www.asam.net/standards/detail/xil/

Classes and Methods of ASAM XIL API

In this section...
“MAPort Class” on page 5-4
“ECUMPort Class” on page 5-5
“ECUCPort Class” on page 5-6
“Capture Class” on page 5-6
“CapturingFactory Class” on page 5-7
“MAPORTFactory Class” on page 5-7
“SignalFactory Class” on page 5-7
“SignalGeneratoryFactory Class” on page 5-9
“SignalGenerator Class” on page 5-10

To interface with test cases, the Simulink Real-Time XIL API support package supports a subset of the
ASAM XIL API. The tables include API methods that you can use with the support package.

The Simulink Real-Time XIL API support package supports XIL stimulation STI/STZ for v2.0-2.2.

MAPort Class
Class Method Introduced

in Support
Package
Version

MAPort CheckVariableNames(variableNames :A_UNICODE2STRING[]) :A_U
NICODE2STRING[]

1.0

MAPort Configure(config :MAPortConfig, forceConfig :A_BOOLEAN) :void 1.0
MAPort GetDataType(variableName :A_UNICODE2STRING) :DataType 1.0
MAPort GetVariableInfo(variableName :A_UNICODE2STRING) :MAPortVari

ableInfo
1.0

MAPort IsReadable(variableName :A_UNICODE2STRING) :A_BOOLEAN 1.0
MAPort IsWritable(variableName :A_UNICODE2STRING) :A_BOOLEAN 1.0
MAPort LoadConfiguration(filepath :A_UNICODE2STRING) :MAPortConfig 1.0
MAPort StartSimulation() :void 1.0
MAPort StopSimulation() :void 1.0
MAPort getConfiguration() :MAPortConfig 1.0
MAPort getState() :MAPortState 1.0
MAPort getTaskInfos() :TaskInfo[] 1.0
MAPort getTaskNames() :A_UNICODE2STRING[] 1.0
MAPort getVariableNames() :A_UNICODE2STRING[] 1.0
MAPort Dispose 1.0

5 ASAM XIL API Support

5-4

Class Method Introduced
in Support
Package
Version

MAPort Disconnect 1.0
MAPort IBaseValue Read(string variableName); 1.1
MAPort void Write(string variableName, IBaseValue value); 1.1
MAPort ICapture CreateCapture(string taskName) 1.1

ECUMPort Class
Class Method Introduced

in Support
Package
Version

ECUMPort CheckVariableNames 1.0
ECUMPort Configure 1.0
ECUMPort CreateCapture 1.0
ECUMPort GetDataType 1.0
ECUMPort GetMeasuringVariables 1.0
ECUMPort GetVariableInfo 1.0
ECUMPort IsReadable 1.0
ECUMPort LoadConfiguration 1.0
ECUMPort Read 1.0
ECUMPort SetMeasuringVariables 1.0
ECUMPort StartMeasurement 1.0
ECUMPort StopMeasurement 1.0
ECUMPort getConfiguration 1.0
ECUMPort getState 1.0
ECUMPort getTaskInfos 1.0
ECUMPort getTaskNames 1.0
ECUMPort getVariableNames 1.0
ECUMPort Disconnect 1.0
ECUMPort Dispose 1.0

 Classes and Methods of ASAM XIL API

5-5

ECUCPort Class
Class Method Introduced

in Support
Package
Version

ECUCPort CalculateRefPageCRC 1.0
ECUCPort CalculateWorkPageCRC 1.0
ECUCPort CheckVariableNames 1.0
ECUCPort Configure 1.0
ECUCPort GetDataType 1.0
ECUCPort GetVariableInfo 1.0
ECUCPort IsReadable 1.0
ECUCPort IsWriteable 1.0
ECUCPort LoadConfiguration 1.0
ECUCPort NumberOfPages 1.0
ECUCPort Read 1.0
ECUCPort StartOnlineCalibration 1.0
ECUCPort StopOnlineCalibration 1.0
ECUCPort SwitchToRefPage 1.0
ECUCPort SwitchToWorkPage 1.0
ECUCPort Write 1.0
ECUCPort getConfiguration 1.0
ECUCPort getState 1.0
ECUCPort getVariableNames 1.0
ECUCPort Disconnect 1.0
ECUCPort Dispose 1.0

Capture Class
Class Method Introduced

in Support
Package
Version

Capture Fetch(whenFinished :A_BOOLEAN) :CaptureResult 1.0
Capture Start(writer :CaptureResultWriter) :void 1.0
Capture getCaptureResult() :CaptureResult 1.0
Capture getState() :CaptureState 1.0
Capture setVariables(variableNames :A_UNICODE2STRING[]) :void 1.0

5 ASAM XIL API Support

5-6

CapturingFactory Class
Class Method Introduced

in Support
Package
Version

CapturingFact
ory

CreateCaptureResult 1.0

MAPORTFactory Class
Class Method Introduced

in Support
Package
Version

MAPortFactor
y

CreateMAPort 1.0

MAPortFactor
y

CreateMAPortBreakpoint See note.

MAPortFactor
y

CreateMAPortBreakpoint2 See note.

Note The signature for the CreateMAPortBreakpoint method is incorrect in ASAM XIL v2.1.0. The
signature for the CreateMAPortBreakpoint2 is the corrected version of the method and is contained
in ASAM XIL v2.1.1.

SignalFactory Class
Class Method Introduced

in Support
Package
Version

SignalFactory CreateConstSegment():IConstSegment 1.1
SignalFactory CreateConstSegment(IConstSymbol duration,

IWatcher stopTrigger, ISymbol
value):IConstSegment

1.1

SignalFactory CreateDataFileSegment():IDataFileSegment 1.1
SignalFactory CreateDataFileSegmentByParameters(string

fileName, string timeVectorName, string
dataVectorName, string channelSource, string
channelPath, string groupName, string
groupSource, string groupPath, IConstSymbol
duration, InterpolationTypes interpolation,
IConstSymbol start, IWatcher stopTrigger):
IDataFileSegment

1.1

 Classes and Methods of ASAM XIL API

5-7

Class Method Introduced
in Support
Package
Version

SignalFactory CreateExpSegment():IExpSegment 1.1
SignalFactory CreateExpSegmentBySymbols(IConstSymbol

duration, ISymbol start, ISymbol stop, IWatcher
stopTrigger, ISymbol tau):IExpSegment

1.1

SignalFactory CreateIdleSegment():IIdleSegment:IIdleSegment 1.1
SignalFactory CreateIdleSegmentByDuration(IConstSymbol

duration, IWatcher stopTrigger):IIdleSegment
1.1

SignalFactory CreateLoopSegment():ILoopSegment 1.1
SignalFactory CreateLoopSegmentByLoopCount(ulong

loopCount):ILoopSegment
1.1

SignalFactory CreateNoiseSegment():INoiseSegment 1.1
SignalFactory CreateNoiseSegmentBySymbols(IConstSymbol

duration, ISymbol mean, ISymbol sigma,
IConstSymbol seed, IWatcher stopTrigger):
INoiseSegment

1.1

SignalFactory CreateOperationSegment():IOperationSegment 1.1
SignalFactory CreateOperationSegmentBySignalSegmentsAndO

perationTypes(ISignalSegment leftSegment,
ISignalSegment rightSegment, OperationTypes
operation): IOperationSegment

1.1

SignalFactory CreatePulseSegment():IPulseSegment 1.1
SignalFactory CreatePulseSegmentBySymbols(IConstSymbol

duration, ISymbol offset, ISymbol amplitude,
ISymbol period, ISymbol dutyCycle, ISymbol
phase, IWatcher stopTrigger):IPulseSegment

1.1

SignalFactory CreateRampSegment():IRampSegment 1.1
SignalFactory CreateRampSegmentBySymbols(IConstSymbol

duration, ISymbol start, ISymbol
stop):IRampSegment

1.1

SignalFactory CreateRampSlopeSegment():IRampSlopeSegmen
t

1.1

SignalFactory CreateRampSlopeSegmentBySymbols(IConstSym
bol duration, ISymbol offset, ISymbol slope,
IWatcher stopTrigger):IRampSlopeSegment

1.1

SignalFactory CreateSawSegment():ISawSegment 1.1
SignalFactory CreateSawSegmentBySymbols(IConstSymbol

duration, ISymbol offset, ISymbol amplitude,
ISymbol period, ISymbol dutyCycle, ISymbol
phase, IWatcher stopTrigger):ISawSegment

1.1

5 ASAM XIL API Support

5-8

Class Method Introduced
in Support
Package
Version

SignalFactory CreateSegmentSignalDescription():ISegmentSign
alDescription

1.1

SignalFactory CreateSegmentSignalDescriptionByName(string
name):ISegmentSignalDescription

1.1

SignalFactory CreateSignalDescriptionSet():ISignalDescriptionS
et

1.1

SignalFactory CreateSignalDescriptionSetByReader(ISignalDes
criptionSetReader reader):ISignalDescriptionSet

1.1

SignalFactory CreateSignalDescriptionSetSTIReaderByFileNam
e(string
fileName):ISignalDescriptionSetSTIReader

1.1

SignalFactory CreateSignalDescriptionSetSTIWriterByFileNam
e(string
fileName):ISignalDescriptionSetSTIWriter

1.1

SignalFactory CreateSignalDescriptionSetSTZReaderByFileNa
me(string
fileName):ISignalDescriptionSetSTZReader

1.1

SignalFactory CreateSignalDescriptionSetSTZWriterByFileNam
e(string
fileName):ISignalDescriptionSetSTZWriter

1.1

SignalFactory CreateSignalValueSegment():ISignalValueSegmen
t

1.1

SignalFactory CreateSignalValueSegmentByValueAndInterpolati
on(ISignalValue value, InterpolationTypes
interpolation):ISignalValueSegment

1.1

SignalFactory CreateSineSegment():ISineSegment 1.1
SignalFactory CreateSineSegmentBySymbols(IConstSymbol

duration, ISymbol offset, ISymbol amplitude,
ISymbol period, ISymbol phase, IWatcher
stopTrigger):ISineSegment

1.1

SignalGeneratoryFactory Class
Class Method Introduced

in Support
Package
Version

SignalGenerat
orFactory

CreateSignalGenerator():ISignalGenerator 1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTIReader():ISignalGener
atorSTIReader

1.1

 Classes and Methods of ASAM XIL API

5-9

Class Method Introduced
in Support
Package
Version

SignalGenerat
orFactory

CreateSignalGeneratorSTIReaderByFileName(str
ing fileName):ISignalGeneratorSTIReader

1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTIWriter():ISignalGenera
torSTIWriter

1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTIWriterByFileName(stri
ng fileName):ISignalGeneratorSTIWriter

1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTZReader():ISignalGener
atorSTZReader

1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTZReaderByFileName(st
ring fileName):ISignalGeneratorSTZReader

1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTZWriter():ISignalGener
atorSTZWriter

1.1

SignalGenerat
orFactory

CreateSignalGeneratorSTZWriterByFileName(stri
ng fileName):ISignalGeneratorSTZWriter

1.1

SignalGenerator Class
Class Method Introduced

in Support
Package
Version

SignalGenerat
or

Load(ISignalGeneratorReader reader) 1.1

SignalGenerat
or

Save(ISignalGeneratorWriter writer) 1.1

SignalGenerat
or

Assignments 1.1

SignalGenerat
or

SignalDescriptionSet 1.1

SignalGenerat
or

State 1.1

SignalGenerat
or

DestryOnTarget() 1.1

SignalGenerat
or

Dispose() 1.1

SignalGenerat
or

LoadToTarget() 1.1

SignalGenerat
or

Pause() 1.1

5 ASAM XIL API Support

5-10

Class Method Introduced
in Support
Package
Version

SignalGenerat
or

Start() 1.1

SignalGenerat
or

Stop() 1.1

SignalGenerat
orSTIReader

Load(out ISignalGenerator signalGenerator) 1.1

SignalGenerat
orSTIWriter

Save(ISignalGenerator signalGenerator) 1.1

SignalGenerat
orSTZReader

Load(out ISignalGenerator signalGenerator) 1.1

SignalGenerat
orSTZWriter

Save(ISignalGenerator signalGenerator) 1.1

See Also
createPortConfigureFile

More About
• “Install the Simulink Real-Time Support Package for ASAM XIL Standard” on page 5-2

External Websites
• ASAM XIL

 Classes and Methods of ASAM XIL API

5-11

https://www.asam.net/standards/detail/xil/

Real-Time Application Setup

13

Real-Time Application Environment

• “Select Default Target Computer” on page 6-2
• “Set Up Target Computer Ethernet Connection” on page 6-3
• “Target Computer Update, Reboot, and Startup Application” on page 6-5

6

Select Default Target Computer
When you start Simulink Real-Time Explorer for the first time, it opens a default target computer
node, TargetPC1. You can configure this node for a target computer, then connect the node to the
target computer. You can add other target computer nodes and designate one of them as the default
target computer.

Select Default Target Computer
To set a target computer node as the default.

Select a nondefault target computer node from the Targets Tree panel in Simulink Real-Time
Explorer.

In the Target Configuration tab, select the Default checkbox.

If you delete a default target computer node, the target computer node preceding it becomes the
default target computer node. The last target computer node becomes the default target computer
node and you cannot delete it.

Command-Line Interface and Target Computer
To use the Simulink Real-Time command-line interface to work with the target computer, you must
indicate the target computer with which the command is interacting. If you do not identify a
particular target computer, the Simulink Real-Time software uses the default target computer.

Targets Object and Target Computers
The Targets object manages collective and individual target computer environments. For more
information, see “Set Up Target Computer Ethernet Connection” on page 6-3.

When you call the Targets object getTargetSettings function without arguments, the
constructor gets the real-time environment settings for the default target computer.

my_tgs = slrealtime.Targets();
my_tgs_settings = getTargetSettings(my_tgs);

When you call the Target object slrealtime function without arguments, the constructor uses the
link properties of the default target computer to communicate with the target computer.

tg = slrealtime;

See Also
Simulink Real-Time Explorer | Targets | getDefaultTargetName | setDefaultTargetName |
Target | slrealtime

6 Real-Time Application Environment

6-2

Set Up Target Computer Ethernet Connection
To install PCI bus Ethernet protocol interface hardware in your Speedgoat target computer, see the
Speedgoat website at www.speedgoat.com.

Ethernet link

Development
computer

network
card

Target
computer

network
card

Connect Ethernet Cables
To configure the target computer Ethernet hardware:

If the target computer already contains one or more Ethernet cards, to get a list of these Ethernet
cards, see your Speedgoat target machine documentation.

Assign a static IP address to the target computer Ethernet card by using Simulink Real-Time
Explorer.

Unlike the target computer, the development computer network adapter card can have a dynamic
host configuration protocol (DHCP) address and can be accessed from the network. Configure the
DHCP server to reserve static IP addresses to prevent these addresses from being assigned to other
systems.

Connect your target computer Ethernet card to your LAN by using an unshielded twisted-pair (UTP)
cable.

You can directly connect your computers by using a crossover UTP cable with RJ45 connectors. Both
computers must have static IP addresses. If the development computer has a second network adapter
card, that card can have a DHCP address.

Configure Ethernet Address
To build and download a real-time application by using the installed Ethernet card, first specify the
environment properties for the development and target computers. Before you start, ask your system
administrator for the following information for your target computer IP address and Subnet mask
address. This procedure sets up Ethernet protocol for the default target computer TargetPC1:

Open Simulink Real-Time Explorer. In the Simulink Editor, on the Real-Time tab, click Prepare >
SLRT Explorer. Or, in the MATLAB Command Window, type slrtExplorer.

In the Simulink Real-Time Explorer Targets Tree panel, select target computer TargetPC1.

On the Target Configuration tab, click the Change IP Address button.

 Set Up Target Computer Ethernet Connection

6-3

https://www.speedgoat.com

Configure the New IP Address and New Netmask fields in the Configure Target Computer IP
Address dialog box. Click OK.

Click the Disconnected label, toggling it to Connected.

Related Ethernet Configuration Topics
You can also configure the target computer Ethernet protocol by using MATLAB commands. For more
information, see the Targets object functions and examples.

See Also
Simulink Real-Time Explorer | slrtExplorer

More About
• “Target Computer Settings”
• “Enable Development Computer Communication (Windows)”
• “Enable Development Computer Communication (Linux)”

6 Real-Time Application Environment

6-4

Target Computer Update, Reboot, and Startup Application
With Simulink Real-Time Explorer, you can update the target computer RTOS software, reboot the
target computer, and configure a startup application that runs each time you start the target
computer.

Update Software
To update the target computer software:

Open Simulink Real-Time Explorer.

In the Targets Tree panel, select target computer TargetPC1.

To update the target computer RTOS software, click the Update Software button.

Click the Disconnected label, toggling it to Connected.

Reboot Target Computer
To reboot the target computer:

Open Simulink Real-Time Explorer.

In the Targets Tree panel, select target computer TargetPC1.

To reboot the target computer, click the Reboot button.

Click the Disconnected label, toggling it to Connected.

Select Startup Application
To configure a startup real-time application:

Open Simulink Real-Time Explorer.

In the Targets Tree panel, select target computer TargetPC1.

To load a real-time application on the target computer, click the Load Application button.

After you load the application, select the application from the Applications on target computer list
and select the Startup App check.box. The next time the target computer starts or reboots, the
application runs on startup.

See Also
update | reboot | setStartupApp

 Target Computer Update, Reboot, and Startup Application

6-5

Signals and Parameters

Important prototyping tasks include:

• Changing parameters in your real-time application while it is running
• Viewing the resulting signal data
• Checking the results

The Simulink Real-Time software includes command-line and graphical user interfaces to complete
these tasks.

• “Signal Monitoring Basics” on page 7-3
• “Monitor Signals by Using Simulink Real-Time Explorer” on page 7-4
• “Instrument a Stateflow Subsystem” on page 7-5
• “Animate Stateflow Charts with Simulink External Mode” on page 7-7
• “Signal Tracing Basics” on page 7-8
• “Export and Import Signals in Instrument by Using Simulink Real-Time Explorer” on page 7-9
• “Trace Signals by Using Simulink External Mode” on page 7-11
• “Data Logging with Simulation Data Inspector (SDI)” on page 7-14
• “Parameter Tuning and Data Logging” on page 7-18
• “Trace or Log Data with the Simulation Data Inspector” on page 7-21
• “External Mode Usage” on page 7-25
• “Signal Logging Basics” on page 7-26
• “Tune Parameters by Using Simulink Real-Time Explorer” on page 7-29
• “Tune Parameters by Using MATLAB Language” on page 7-32
• “Tune Parameters by Using Simulink External Mode” on page 7-34
• “Save and Reload Parameters by Using the MATLAB Language” on page 7-36
• “Tunable Block Parameters and Tunable Global Parameters” on page 7-40
• “Tune Inlined Parameters by Using Simulink Real-Time Explorer” on page 7-43
• “Tune Inlined Parameters by Using MATLAB Language” on page 7-47
• “Tune Parameter Structures by Using Simulink Real-Time Explorer” on page 7-48
• “Tune Parameter Structures by Using MATLAB Language” on page 7-51
• “Define and Update Inport Data” on page 7-54
• “Define and Update Inport Data by Using MATLAB Language” on page 7-59
• “Stimulate Root Inport by Using MATLAB Language” on page 7-62
• “Inport Data Mapping Limitations” on page 7-64
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “Troubleshoot Signals Not Accessible by Name” on page 7-69
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

7

• “Troubleshoot Instance-Specific Parameters Not Saved” on page 7-72
• “Internationalization Issues” on page 7-73

7 Signals and Parameters

7-2

Signal Monitoring Basics
Signal monitoring acquires real-time signal data without time information during real-time
application execution. There is a minimal additional load on the real-time tasks.

You can monitor signals by using:

• Simulink Real-Time Explorer and the Simulation Data Inspector
• MATLAB language and the Instrument object
• Simulink external mode and a Scope block

For more information, see Simulation Data Inspector and “How Application is Run Affects Signals
Logged” on page 7-26.

See Also
Instrument | Scope

More About
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “View Data in the Simulation Data Inspector”
• “Troubleshoot Signals Not Accessible by Name” on page 7-69

 Signal Monitoring Basics

7-3

Monitor Signals by Using Simulink Real-Time Explorer
This procedure uses the model slrt_ex_osc. You must have already completed this setup:

Open model slrt_ex_osc. Set property Stop time to inf. On the Simulink Editor Real-Time tab,
select Run on Target > Stop Time and set the Stop Time to inf.

Connect to the target computer. Toggle the Disconnected indicator to Connected.

Build and download the real-time application to the target computer. Click Run on Target.

Open Simulink Real-Time Explorer. Click Prepare > SLRT Explorer.

To monitor a signal in the real-time application, in Simulink Real-Time Explorer, click Load
Application. Select the slrt_ex_osc application from the Applications on target computer list
and click Load.

Click the Signals tab.

Select the signals to monitor from the list, and then click Add to signals in instrument . To
monitor signals, click Start Streaming. To display the monitored signal values, click View Values.

To start the real-time application, click Start.

To view the signals in the Simulation Data Inspector, click Data Inspector.

To stop execution, click Stop.

See Also

More About
• “Export and Import Signals in Instrument by Using Simulink Real-Time Explorer” on page 7-9
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “Troubleshoot Signals Not Accessible by Name” on page 7-69

7 Signals and Parameters

7-4

Instrument a Stateflow Subsystem
A Simulink Real-Time model that uses Stateflow blocks can provide visual confirmation that your
chart behaves as expected when you simulate the model or run the real-time application.

This procedure uses the model slrt_ex_sf_car. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_sf_car'))

To make Stateflow states available in the Simulation Data Inspector, select them and mark them for
Log Self Activity.

Open the slrt_ex_sf_car model.

Double-click the shift_logic chart.

In the gear_state chart, select the first state

 Instrument a Stateflow Subsystem

7-5

Click the Log Self Activity button and the Test Point button.

Repeat steps 3–4 for gear_state values second, third, and fourth.

Build and download the real-time application to the target computer. On the Real-Time tab, click
Run on Target.

Monitor Stateflow states by using the Simulation Data Inspector. For more information, see “View
Data in the Simulation Data Inspector” and “View State Activity by Using the Simulation Data
Inspector” (Stateflow).

See Also

More About
• “View Data in the Simulation Data Inspector”
• “View State Activity by Using the Simulation Data Inspector” (Stateflow)
• “Animate Stateflow Charts with Simulink External Mode” on page 7-7

7 Signals and Parameters

7-6

Animate Stateflow Charts with Simulink External Mode
The Simulink Real-Time software supports the animation of Stateflow charts in your model to provide
visual confirmation that your chart behaves as expected. You must be familiar with the use of
Stateflow animation. For more information on Stateflow animation, see “Animate Stateflow Charts”
(Stateflow).

You must have already configure the Stateflow states for animation in the model. If you have not, see
“Animate Stateflow Charts” (Stateflow). This example uses model slrt_ex_sf_car. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_sf_car'))

Open the external mode control panel. In the Simulink Editor, in the Real-Time tab, click Prepare >
Control Panel.

Select Signal & Triggering.

In the Trigger section of the External Signal & Triggering window:

a To direct the trigger to re-arm after the trigger event completes, set Mode to normal.
b To select the number of base rate steps for which external mode uploads data after a trigger

event, in the Duration box, enter 5.
c To direct data upload to begin immediately after the trigger event, select the Arm when

connecting to target check box.

Click Apply. For more information about signal and triggering options, see “Configure Host
Monitoring of Target Application Signal Data”.

Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.

Build and download the model to the target computer. On the Real-Time tab, click Run on Target.

The simulation begins to run. You can observe the animation by opening the Stateflow Editor for your
model.

To stop the simulation, on the Real-Time tab, click Stop.

See Also

More About
• “Animate Stateflow Charts” (Stateflow)
• “Configure Host Monitoring of Target Application Signal Data”
• “Simulink External Mode Interface”

 Animate Stateflow Charts with Simulink External Mode

7-7

Signal Tracing Basics
Signal tracing acquires signal and time data from a real-time application. While the real-time
application is running, you can visualize the data on the target computer by using the Simulation
Data Inspector. You can upload the data from a File Log block to the development computer and
display it using the Simulation Data Inspector.

You trace signals by marking the signals for logging or connecting the signals to File Log blocks. View
the signals by using Simulink Real-Time Explorer, Simulink external mode, and the Simulation Data
Inspector. For more information, see Simulation Data Inspector and “How Application is Run
Affects Signals Logged” on page 7-26.

See Also

More About
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “View Data in the Simulation Data Inspector”
• “Troubleshoot Signals Not Accessible by Name” on page 7-69

7 Signals and Parameters

7-8

Export and Import Signals in Instrument by Using Simulink
Real-Time Explorer

When testing a complex model with many signals, you frequently must select signals for tracing or
monitoring from multiple parts and levels of the model hierarchy.

Save Signals to Disk
You can make this task easier by using Simulink Real-Time Explorer to select the signals in
instrument and save the list of signals to disk.

Open model slrt_ex_osc.

Connect to the target computer. On the Simulink Editor Real-Time tab, toggle the Disconnected
indicator to Connected.

Build and download the real-time application to the target computer. Click Run on Target.

Open Simulink Real-Time Explorer. Click Prepare > SLRT Explorer.

To add signals to the signals in instrument, export the list of signals, and import the list of signals.

In Simulink Real-Time Explorer, click Load Application. Select the slrt_ex_osc application from
the Applications on target computer list and click Load.

Click the Signals tab.

Select the signals to monitor from the list and then click Add to signals in instrument .

To export the list, click Export instrument to file . Name the files and click Save.

To remove signals from the signals in the instrument, select the signals in the list, and then click
Remove signals from instrument .

To import the list, click Import instrument from file . Select the file and click Open.

Get MATLAB Code for Signals
When developing an App Designer application or an m-script that connects to a real-time application,
it is helpful to have MATLAB code for the signals in the instrument. This code provides access to
signals in an Instrument object (or instrumented signals), which are signals that are configured for
streaming signal data from a real-time application. To generate this code from the Signals in
Instrument:

In Simulink Real-Time Explorer, click Load Application. Select the slrt_ex_osc application from
the Applications on target computer list and click Load.

Click the Signals tab.

Select the signals to monitor from the list, and then click Add to signals in instrument .

 Export and Import Signals in Instrument by Using Simulink Real-Time Explorer

7-9

To create MATLAB code for the signals in the instrument, click Generate MATLAB code to create

Instrument programmatically . An editor window opens in MATLAB and displays the code for
the signals in the Instrument.

See Also
Instrument | addSignal | connectLine | connectScalar | validate

More About
• “Monitor Signals by Using Simulink Real-Time Explorer” on page 7-4
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65

7 Signals and Parameters

7-10

Trace Signals by Using Simulink External Mode
You can use Simulink external mode to establish a communication channel between your Simulink
block diagram and your real-time application. The block diagram becomes a user interface to your
real-time application. Simulink scopes can display signal data from the real-time application,
including from models referenced inside a top model. You can control which signals to upload through
the External Signal & Triggering dialog box. See “Select Signals to Upload” and “TCP/IP or Serial
External Mode Control Panel”.

If using external mode simulation with the model serving as the interface to the real-time application
and the model contains referenced models, use the Simulation Data Inspector to log signal data. Do
not use Floating Scope or Scope Viewer blocks to display signals in the referenced models for
external mode simulation.

Note Do not use Simulink external mode while Simulink Real-Time Explorer is running. Use only one
interface to control the real-time application.

Set Up for External Mode Simulation
This procedure uses model slrt_ex_osc. This model contains a Simulink Scope block. To set up
triggering for the external mode simulation:

Open model slrt_ex_osc.

Open the external mode control panel. In the Simulink Editor, on the Real-Time tab, click Prepare >
Control Panel.

In the external mode control panel, click Signal & Triggering.

In the External Signal & Triggering dialog box, set the Source parameter to manual.

Set the Mode parameter to normal. In this mode, the scope acquires data continuously.

Select the Arm when connecting to target check box.

In the Delay box, enter 0.

In the Duration box, enter the number of samples for which external mode is to log data, for
example, 1000. The External Signal & Triggering dialog box looks like this figure.

 Trace Signals by Using Simulink External Mode

7-11

Click Apply, and then Close. In the External Mode Control Panel dialog box, click OK.

Set Stop Time and Simulate
To set the stop time and run the simulation:

In the Simulink toolbar, increase the simulation stop time to, for example, 50.

Save the model as ex_slrt_ext_osc. On the Simulation tab, from Save, click Save As.

If a scope window is not displayed for the Scope block, double-click the Scope block.

Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.

Build and download the real-time application to the target computer. Click Run on Target.

The real-time application begins running on the target computer. The Scope window displays plotted
data.

7 Signals and Parameters

7-12

To stop the simulation, on the Real-Time tab click Stop.

See Also

 Trace Signals by Using Simulink External Mode

7-13

Data Logging with Simulation Data Inspector (SDI)
This example shows how to use a Simulink® Real-Time™ log of signal data and the Simulation Data
Inspector. Signals are logged during model execution. At the end of the run, the Simulation Data
Inspector interface displays the signal. This example show how to get the signals from the Simulation
Data Inspector interface by using the command line.

Open, Build, and Download Model

Open the model slrt_ex_soc_dist. This model calibrates the control efforts through social
distancing on an infectious disease outbreak.

Open the model.

model = 'slrt_ex_soc_dist';
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if all(~strcmp(model, systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_soc_dist.slx'));
end

7 Signals and Parameters

7-14

Build the model and download to the target computer:

• Configure for a non-Verbose build.
• Build and download application.

set_param(model,'RTWVerbose','off');
evalc('slbuild(model)');

• Close the model it is open.

if (mdlOpen)
 bdclose(model);
end

 Data Logging with Simulation Data Inspector (SDI)

7-15

Run Model to Evaluate Effects of No Social Distancing During Outbreak

Using the Simulink Real-Time object variable, tg, load and start the model, and modify model
parameters.

tg = slrealtime;
load(tg,model);
setparam(tg,'','soc_dist_level',1);
setparam(tg,'','thresh_int_level',1);
start(tg);
while ~strcmp(tg.status,'stopped')
 pause(5);
end
stop(tg);

Update Parameters and Re-evaluate Effect of Social Distancing During Outbreak

Using the Simulink Real-Time object variable, tg, load and start the model, and modify model
parameters

tg = slrealtime;
load(tg,model);
setparam(tg,'','soc_dist_level',0.2);
setparam(tg,'','thresh_int_level',0.2);
start(tg);
while ~strcmp(tg.status,'stopped')
 pause(5);
end
stop(tg);

Display Signals in Simulation Data Inspector

To view the plotted signal data, open the Simulation Data Inspector.

Simulink.sdi.view

Retrieve and Plot Signal Data from Simulation Data Inspector

You can also retrieve the signal data from the SDI and plot the data by using these commands.

• Get all the runs
• Get the run information
• Get the signal.
• Get the signal objects.
• Take only infectious group values.
• Plot the signals.

The result shows that social distancing can reduce the number of hospitalized people

runIds = Simulink.sdi.getAllRunIDs();

for i = 1:length(runIds)
 run = Simulink.sdi.getRun(runIds(i));
 signalID = run.getSignalIDsByName('hospitalized');
 if ~isempty(signalID)
 signalObj = Simulink.sdi.getSignal(signalID);

7 Signals and Parameters

7-16

 signalArray(:,i) = signalObj.Values(:,1).Data;
 timeValues = 100*(signalObj.Values(:,1).Time);
 plot(timeValues,signalArray);
 drawnow;
 end
end

grid on;
xlabel('Time in days'); ylabel('hospitalized people');

See Also
slrtTETMonitor | SLRT Overload Options

More About
• “Trace or Log Data with the Simulation Data Inspector” on page 7-21
• Simulation Data Inspector

 Data Logging with Simulation Data Inspector (SDI)

7-17

Parameter Tuning and Data Logging
This example shows how to use real-time parameter tuning and data logging with Simulink® Real-
Time™. After the example builds the model and downloads the real-time application,
slrt_ex_param_tuning, to the target computer, the example executes multiple runs with the gain
'Gain1/Gain' changed (tuned) before each run. The gain sweeps from 0.1 to 0.7 in steps of 0.05.

The example uses the data logging capabilities of Simulink Real-Time to capture signals of interest
during each run. The logged signals are uploaded to the development computer and plotted. A 3-D
plot of the oscillator output versus time versus gain is displayed.

Open, Build, and Download Model to the Target Computer

Open the model, slrt_ex_param_tuning. The model configuration parameters select the
slrealtime.tlc system target file as the code generation target. Building the model creates a real-
time application, slrt_ex_param_tuning.mldatx, that runs on the target computer.

model = 'slrt_ex_param_tuning';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

Build the model and download the real-time application, slrt_ex_param_tuning.mldatx, to the
target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param(model,'RTWVerbose','off');
set_param(model,'StopTime','0.2');
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);

Run Model, Sweep 'Gain' Parameter, Plot Logged Data

This code accomplishes several tasks.

7 Signals and Parameters

7-18

Task 1: Create Target Object

Create the MATLAB® variable, tg, that contains the Simulink Real-Time target object. This object
lets you communicate with and control the target computer.

• Create a Simulink Real-Time target object.
• Set stop time to 0.2s.

Task 2: Run the Model and Plot Results

Run the model, sweeping through and changing the gain (damping parameter) before each run. Plot
the results for each run.

• If no plot figure exist, create the figure.
• If the plot figure exist, make it the current figure.

Task 3: Loop over damping factor z

• Set damping factor (Gain1/Gain).
• Start run of the real-time application.
• Store output data in outp, y, and t variables.
• Plot data for current run.

Task 4: Create 3-D Plot (Oscillator Output vs. Time vs. Gain)

• Loop over damping factor.
• Create a plot of oscillator output versus time versus gain.
• Create 3-D plot.

figh = findobj('Name', 'parsweepdemo');
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'parsweepdemo', 'NumberTitle', 'off');
else
 figure(figh);
end
y = []; flag = 0;
for z = 0.1 : 0.05 : 0.7
 if isempty(find(get(0, 'Children') == figh, 1))
 flag = 1;
 break;
 end
 load(tg,model);
 tg.setparam([model '/Gain1'],'Gain',2 * 1000 * z);
 tg.start('AutoImportFileLog',true, 'ExportToBaseWorkspace', true);
 pause(0.4);
 outp = logsOut{1}.Values;
 y = [y,outp.Data(:,1)];
 t = outp.Time;
 plot(t,y);
 set(gca, 'XLim', [t(1), t(end)], 'YLim', [-10, 10]);
 title(['parsweepdemo: Damping Gain = ', num2str(z)]);
 xlabel('Time'); ylabel('Output');
 drawnow;
end

 Parameter Tuning and Data Logging

7-19

if ~flag
 delete(gca);
 surf(t(1 : 200), 0.1 : 0.05 : 0.7, y(1 : 200, :)');
 colormap cool
 shading interp
 h = light;
 set(h, 'Position', [0.0125, 0.6, 10], 'Style', 'local');
 lighting gouraud
 title('parsweepdemo: finished');
 xlabel('Time'); ylabel('Damping Gain'); zlabel('Output');
end

Close Model

When done, close the model.

close_system(model,0);

See Also
slrtTETMonitor

More About
• “Trace or Log Data with the Simulation Data Inspector” on page 7-21
• Simulation Data Inspector

7 Signals and Parameters

7-20

Trace or Log Data with the Simulation Data Inspector
With the Simulation Data Inspector and Simulink Real-Time, you can trace signal data by streaming
signal data directly to the Simulation Data Inspector or by logging signal data by recording it through
a File Log block. If streaming signal data directly, you view the output in real time as the application
produces it.

The application can produce more data than the target computer can transmit in real time to the
development computer. Data accumulates in the network buffer, and, if the buffer fills up, the RTOS
drops data points. Streaming signal data directly does not support decimation or limit data points.

To avoid dropped data points caused by network buffer overruns, you can use logging through a File
Log block. When logging, you connect signals to File Log blocks in the model. In the real-time
application, these blocks store data for the buffered signals on the target computer. At the end of
execution, the real-time application transmits the data to the development computer for display in the
Simulation Data Inspector. You can then view the most important signals immediately and view the
buffered signals afterward.

Logging signal data through a File Log block supports decimation or limit data points and supports
conditional block execution semantics. Some examples are logging signal data by enabling data
logging for a signal inside a for-iterator, function-call, or enabled/triggered subsystem. For more
information, see Simulation Data Inspectorand “How Application is Run Affects Signals Logged”
on page 7-26.

Set Up Model for Logging
To set up the model for logging signal data:

Open slrt_ex_osc.

Select the MuxOut output signal, place your cursor over the signal, and select Enable Data
Logging.

Tip Consider whether to configure the Logging sample time in the Instrumentation Properties
for the logged signal. Use this property to set a lower sample time for signals that go into the
Simulation Data Inspector while the simulation is running. Configuring this property can help makes
the Simulation Data Inspector more responsive and easier to use.

Double-click the File Log block. The Decimation value is 1.

Set Up Simulation Data Inspector
To set up the Simulation Data Inspector:

Open the Simulation Data Inspector ().

Click Layout ().

 Trace or Log Data with the Simulation Data Inspector

7-21

Select two horizontal displays.

View Simulation Data
To view the simulation data:

Build and download slrt_ex_osc.

Start real-time execution.

When the Simulation Data Inspector button glows , click the top display and select the Sum
output signal.

Click in the bottom display and select the Mux output signals.

Stop real-time execution.

7 Signals and Parameters

7-22

When the Sum output appears, click Fit to View ().

To zoom in on a time segment of interest, for example, 10.0–10.1 s, click Zoom in Time () and use
the mouse and mouse wheel.

 Trace or Log Data with the Simulation Data Inspector

7-23

To save the Simulation Data Inspector session as an MLDATX file, click Save.

See Also

More About
• “Data Logging with Simulation Data Inspector (SDI)” on page 7-14
• Simulation Data Inspector

7 Signals and Parameters

7-24

External Mode Usage
When setting up signal triggering (Source set to signal), explicitly specify the element number of the
signal in the Trigger signal:Element box. If the signal is a scalar, enter a value of 1. If the signal is a
wide signal, enter a value from 1 to 10. When uploading Simulink Real-Time signals to Simulink
scopes, do not enter Last or Any in this box.

The Direction:Holdoff value does not affect the Simulink Real-Time signal uploading feature.

See Also

More About
• “Trace Signals by Using Simulink External Mode” on page 7-11
• “Trace or Log Data with the Simulation Data Inspector” on page 7-21
• “Simulink External Mode Interface”

 External Mode Usage

7-25

Signal Logging Basics
Signal logging acquires signal data during a real-time run and stores it on the target computer. After
you stop the real-time application, you transfer the data from the target computer to the development
computer for analysis. You can plot and analyze the data, and later save it to a disk on the
development computer.

Simulink Real-Time signal logging samples at the base sample time. You can log signals to the
Simulation Data Inspector by:

• Mark signals for immediate logging to the Simulation Data Inspector.
• Connect signals to File Log blocks for buffered logging to the Simulation Data Inspector.

With regards to logging:

• Simulink Real-Time Explorer works with multidimensional signals in column-major format.
• Some signals are not observable.

How Application is Run Affects Signals Logged
The Run on Target button provides slightly different data logging support than running the real-time
application by using the start(tg) command:

• When you run the real-time application by using the start(tg) command, only signals marked
for data logging or connected to a File Log block are logged to the Simulation Data Inspector.

• When you run the real-time application by using the Run on Target button on the real-time tab in
the Simulink Editor or the Start button in the Simulink Real-Time Explorer, signals marked for
logging, signals connected to File Log blocks, and signals connected to Scope blocks are logged to
the Simulation Data Inspector.

File Logging and Streaming Workflow
You can get signal data into the Simulation Data Inspector through logging by using a File Log block
or through streaming by marking a signal for logging in the model or selecting a signal for streaming
in the Simulink Real-Time Explorer.

Signal logging through a File Log block provides options that let you control:

• The number of file logs that are retained on the target computer
• Whether file log data is auto imported into the Simulation Data Inspector
• Whether file log data is exported into the base workspace

You can configure these options by using the option for the real-time application start(tg) function
or by using the Run in Real-Time selection in the Simulink Real-Time Explorer or the Simulink
Editor. The File Logging and Streaming Workflow figure shows how these options configure
operation of the real-time application start(tg) function.

7 Signals and Parameters

7-26

start(tg)

stop(tg) or StopTime

startRecording(tg)

stopRecording(tg)

true

false

AutoImportFileLog

FileLogMaxRuns

StopTime

ExportToBaseWorkspace

AutoImport
FileLog

import(tg.FileLog,'app')

Auto import of
FileLog occurs

File Logging
&

Streaming
enabled

Real-Time
application

running
. . .

Generates
signal data

enable(tg.FileLog) or
Enable File Log (enable)

disable(tg.FileLog) or
Enable File Log (disable)

Default
File Logging

stopRecording(tg)disable(tg.FileLog) or
Enable File Log (disable)

File Logging
enabled

File Logging
&

Streaming
enabled

File Logging and Streaming Workflow

While the real-time application is running, you can control file logging from File Log blocks:

 Signal Logging Basics

7-27

• Default logging logs signal data for the entire simulation run.
• Enable or disable file logging by using the Enable File Log block in the model.
• Enable or disable file logging by using the enable(tg.FileLog) function or

disable(tg.FileLog) function.
• Enable or disable file logging by using the startRecording function or stopRecording

function. These function also enable or disable streaming.

After file logging stops, which occurs:

• By using the stop(tg) function
• By StopTime expiring
• By using the stopRecording(tg) function

The configuration of the AutoImportFileLog option selects whether file log data is auto imported
into the Simulation Data Inspector or whether you use the import(tg.FileLog) function to import
the data.

Auto import of the file log is handled differently by the workflows in the File Logging and
Streaming Workflow figure:

• For all the workflows, the auto import operation occurs when the real-time application stops.
• For the recording workflow, the auto import operation also occurs when the stopRecording

function is called.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 7-69
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65

7 Signals and Parameters

7-28

Tune Parameters by Using Simulink Real-Time Explorer
You can use Simulink Real-Time Explorer to change parameters in your real-time application while it
is running or between runs. You do not need to rebuild the Simulink model, set the Simulink interface
to external mode, or connect the Simulink interface with the real-time application.

This procedure uses the model slrt_ex_osc.

Set Up the Simulation Data Inspector
Before tuning parameter values, set up the Simulation Data Inspector:

Open the Simulation Data Inspector ().

Click Layout ().

Select two horizontal displays.

Open model slrt_ex_osc. Set property Stop time to inf. In the Simulink Editor, on the Real-Time
tab, select Run on Target > Stop Time and set Stop Time to inf.

Connect to the target computer. Toggle the Disconnected indicator to Connected.

Build and download the real-time application to the target computer. Click Run on Target.

In the Simulation Data Inspector, drag the MuxOut(1) signal to the top display and drag the
MuxOut(2) signal to the bottom display.

 Tune Parameters by Using Simulink Real-Time Explorer

7-29

View Initial Parameter Values
To view the initial parameter values:

Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT Explorer.

Select the Parameters tab. The tab lists parameters Amplitude, Frequency, A, and C with their
values.

Modify Parameter Values
To update a parameter value:

Select the parameter value for the Amplitude parameter and change the value to 0.5.

Select the parameter value for the Frequency parameter and change the value to 15.

7 Signals and Parameters

7-30

After each change, the signal display in the Simulation Data Inspector alters to match the effect of
the parameter change. You can change multiple parameters at the same time by using The Hold
Updates button. For more information, see “Tune Parameters by Using Hold Updates and Update All
Parameters” on page 7-34.

See Also

More About
• “Simulink Real-Time Operation Modes”
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “Tune Parameters by Using Hold Updates and Update All Parameters” on page 7-34
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

 Tune Parameters by Using Simulink Real-Time Explorer

7-31

Tune Parameters by Using MATLAB Language
To change block parameters, you can use the MATLAB functions. With these functions, you do not
need to set the Simulink interface to external mode or connect the Simulink interface with the real-
time application.

You can download parameters to the real-time application while it is running or between runs. You
can change parameters in your real-time application without rebuilding the Simulink model and
change them back to their original values by using Simulink Real-Time functions.

Note Simulink Real-Time does not support parameters of multiword data types.

Access Parameters by Using Application Object
This procedure uses the Simulink model slrt_ex_osc. You must have already created and
downloaded the real-time application to the default target computer.

To create the target object and application object, in the MATLAB Command Window, type:

tg = slrealtime('TargetPC1');
app = slrealtime.Application('slrt_ex_osc');

The Parameters property of the Application object is a structure that includes a BlockPath and
BlockParameterName for each parameter. To display the parameter name of the first of parameter in
the real-time application, in the MATLAB Command Window, type:

app.Parameters(1).BlockParameterName

To change the gain for the Gain1 block, type:

pt = setparam(tg, 'Gain1', 'Gain', 800)

The setparam method returns a structure that stores the source information, the previous value, and
the new value.

When you change parameters, the changed parameters in the target object are downloaded to the
real-time application. The development computer displays this message:

pt =

 Source: {'Gain1' 'Gain'}
 OldValues: 400
 NewValues: 800

The real-time application runs. The plot frame updates the signals for the active scopes.

Stop the real-time application. In the Command Window, type:

stop(tg)

To reset to the previous values, type:

pt = setparam(tg, pt.Source{1}, pt.Source{2}, pt.OldValues)

pt =

7 Signals and Parameters

7-32

 Source: {'Gain1' 'Gain'}
 OldValues: 800
 NewValues: 400

See Also

More About
• “Simulink Real-Time Operation Modes”
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

 Tune Parameters by Using MATLAB Language

7-33

Tune Parameters by Using Simulink External Mode
To connect your Simulink model to your real-time application, you use Simulink external mode
simulation. The model becomes a user interface to your real-time application. Set up the Simulink
interface in external mode to establish a communication channel between your Simulink model and
your real-time application.

In Simulink external mode, when you change parameters in the Simulink model, Simulink downloads
those parameters to the real-time application while it is running. You can change parameters in your
program without rebuilding the Simulink model to create a new real-time application.

Note Simulink Real-Time does not support parameters of multiword data types.

Tune Parameters by Using Block Diagram
After you download your real-time application to the target computer, you can connect your Simulink
model to the real-time application. This procedure uses the Simulink model slrt_ex_osc. You must
have already built and downloaded the real-time application for that model.

Open model slrt_ex_osc.

Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.

Build and download the real-time application to the target computer. Click Run on Target.

The real-time application begins running on the target computer.

From the Simulation block diagram, double-click the block labeled Gain1

In the Block Parameters: Gain1 parameter dialog box, in the Gain text box, enter 800. Click OK.

When you change a MATLAB variable and click OK, the changed parameters in the model are
downloaded to the real-time application.

To stop the simulation, click Stop.

Disconnect to the target computer. Toggle the Connected indicator to Disconnected.

The Simulink model is disconnected from the real-time application. If you then change a block
parameter in the Simulink model, the real-time application does not change.

Tune Parameters by Using Hold Updates and Update All Parameters
By using the Hold Updates button, you can tune multiple parameters and apply the tuning changes
at once by using Update All Parameters, instead of tuning one parameter at a time. This example
uses model slrt_ex_osc.

Open model slrt_ex_osc. in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc'))

7 Signals and Parameters

7-34

In the Simulink Editor, on the Real-Time tab, click Run on Target.

Click Prepare > Hold Updates. The editor holds parameter updates until you click Hold Updates
again.

To set parameter values, you can set values either by clicking each block or by using the Model Data
Editor in the base workspace.

On the Real-Time tab, click Prepare > Signal Table.

In the Model Data Editor, click the Parameters tab. Modify parameters values in the Model Data
Editor in the base workspace.

Click Prepare > Update All Parameters.

To stop the simulation before it ends, click Stop.

See Also

More About
• “Simulink Real-Time Operation Modes”
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

 Tune Parameters by Using Simulink External Mode

7-35

Save and Reload Parameters by Using the MATLAB Language
After you load a real-time application that has parameter values, you can save those values to a
parameter set file on the target computer. You can then later reload these parameter values to the
same real-time application. To ease the process of tuning parameters, use the ParameterSet object
workflow. For example code that demonstrates this workflow, see the ParameterSet object.

Load real-time
application

Save
parameter set file

Import parameter
set into

ParameterSet object

Explore
ParameterSet object

Edit
parameters?

Yes

No

Done tuning
parameters

Export ParameterSet
data to parameter

set file

Load parameter
set into

real-time application

Real-time
simulation

Parameters
okay?

Export parameters to
model from

parameter set file

Yes

No

When your parameter set values are tuned, you can:

• Export the values from the parameter values to the model by using exportToModel function.
• Save the ParameterSet object as a MAT file and share this MAT file with other developers.
• Add the parameter set into the real-time application MLDATX file and set the parameter set as the

startup parameter set by using the addParamSet and updateStartupParameterSet functions.

You can save parameters from your real-time application while the real-time application is running or
between runs. You can save and restore parameters in your real-time application without rebuilding

7 Signals and Parameters

7-36

the Simulink model. Load parameters to the same real-time application from which you saved the
parameter file. If you attempt to load a parameter file to a different real-time application or to a real-
time application that has changed since the parameter set was created, the load issues an error.

You can use the syncWithApp function to synchronize an out-of-sync parameter set object with the
specified real-time application. This function synchronizes the parameter name-value pairs and
synchronizes the model checksum saved in the parameter set object with the real-time application.
After synchronizing, the parameter set that you saved from the original application can be loaded into
the most updated application on the target computer.

You save and restore parameters by using the target object methods saveParamSet and
loadParamSet.

Requirements:

• Create a Target object named tg connected to the target computer.
• Load a real-time application on the target computer.
• There are parameters to save from the application.

Save Current Set of Real-Time Application Parameters
To save a set of parameters from a real-time application to a parameter set file, use the
saveParamSet function. The real-time application can be loaded or running.

This example uses the model slrt_ex_osc_outport. To open this model, in the MATLAB Command
Window, type:

open_system((fullfile(matlabroot,'toolbox','slrealtime', ...
 'examples','slrt_ex_osc_outport')))

Select a descriptive file name for the parameters. For example, use the model name in the file name.

In the MATLAB Command Window, type:

% build model and load real-time application
mdlName = 'slrt_ex_osc_outport';
slbuild(mdlName);
tg = slrealtime('TargetPC1');
load(tg,mdlName);

% save parameter set to file
paramSetName = 'outportTypes';
saveParamSet(tg,paramSetName);

The Simulink Real-Time software creates a parameter set file named outportTypes on the target
computer.

Load Saved Parameters to Real-Time Application
To load a parameter set file of saved parameters to a real-time application, use the loadParamSet
function. Load parameters to the same real-time application from which you save the parameter set
file. If you attempt to load a parameter file to a different real-time application or to the a real-time
application that has changed since the parameter set was created, the load issues an error. This

 Save and Reload Parameters by Using the MATLAB Language

7-37

example uses the model slrt_ex_osc_outport. You must have a parameters file saved from an
earlier run of saveParamSet to perform this procedure.

To open this model, in the MATLAB Command Window, type:

open_system((fullfile(matlabroot,'toolbox','slrealtime', ...
 'examples','slrt_ex_osc_outport')))

From the collection of parameter set files on the target computer, select the one that contains the
parameter values to load. To get a list of available parameter set files, use the listParamSet
function.

In the Command Window, type:

% load real-time application
mdlName = 'slrt_ex_osc_outport';
tg = slrealtime('TargetPC1');
load(tg,mdlName);

% load parameter set file
paramSetName = 'outportTypes';
loadParamSet(tg,paramSetName);

The Simulink Real-Time software loads the parameter values into the real-time application. For an
example that shows how to get the parameter values from a ParameterSet object and use the object
in the loadParamSet function, see loadParamSet.

View or Edit Parameter Values in Parameter Set
To view or edit parameters in a parameter set, use the ParameterSet object workflow. For more
information about this workflow, see “Save and Reload Parameters by Using the MATLAB Language”
on page 7-36.

Build the model and load the real-time application.

mdlName = 'slrt_ex_osc_outport';
slbuild(mdlName);
tg = slrealtime('TargetPC1');
load(tg,mdlName);

Save the parameter set to a file.

paramSetName = 'outportTypes';
saveParamSet(tg,paramSetName);

Import the parameter set into a ParameterSet object on the development computer.

myParamSet = importParamSet(tg,paramSetName);

Open the ParameterSet in the Simulink Real-Time Parameter Explorer UI. In the explorer, you can
view and edit the parameter values in the object.

explorer(myParamSet);

After tuning the parameters, export the modified parameter set to the target computer and load the
parameters into the real-time application.

7 Signals and Parameters

7-38

exportParamSet(tg,myParamSet);
loadParamSet(tg,myParamSet.filename);

Add or Update Startup Parameter Set for Application
You can add a ParameterSet object to a real-time application by using the addParamSet function.
After adding one or more ParameterSet objects to an application by using the addParamSet
function, you can choose which of these parameter sets is loaded into the real-time application on
startup by using the updateStartupParameterSet function.

This example loads a real-time application, imports the parameters into a ParameterSet object,
adds the ParameterSet object to a real-time application, and selects the parameter set as the
startup parameter set for the application.

load(tg,mdlName);
paramSetName = 'outportTypes';
saveParamSet(tg,paramSetName);
myParamSet = importParamSet(tg,paramSetName);
addParamSet(app_object,myParamSet);
updateStartupParameterSet(app_object,myParamSet);

See Also
delete | explorer | exportToModel | set | syncWithApp | exportParamSet | getparam |
getParameters | importParamSet | listParamSet | loadParamSet | saveParamSet |
setparam | addParamSet | updateStartupParameterSet | Application | ParameterSet |
Target

More About
• “Tune Parameters by Using Simulink Real-Time Explorer” on page 7-29
• “Tune Parameters by Using MATLAB Language” on page 7-32
• “Tune Parameters by Using Simulink External Mode” on page 7-34
• “Troubleshoot Instance-Specific Parameters Not Saved” on page 7-72

 Save and Reload Parameters by Using the MATLAB Language

7-39

Tunable Block Parameters and Tunable Global Parameters
To change the behavior of a real-time application, you can tune Simulink Real-Time tunable
parameters. In Simulink external mode, you can change the parameters directly in the block or
indirectly by using MATLAB variables to create tunable global parameters. Simulink Real-Time
Explorer and the MATLAB language enable you to change parameter values and MATLAB variables as
your real-time application is executing.

Note Simulink Real-Time does not support parameters of multiword data types.

Tunable Parameters
Simulink Coder defines two kinds of parameters that can be modified during execution: tunable block
parameters and tunable global parameters. Simulink Real-Time support for tunable parameters
includes:

• Variables for block parameters that are present in the top model workspace or MATLAB base
workspace. These variables are tunable global parameters.

• Literal expressions for block parameters that are present in the top model workspace or data
dictionary. These expressions are tunable block parameters.

• Instance-specific block parameters that are present in referenced models. These parameters are
tunable global parameters.

Tunable Block Parameters

A tunable block parameter is a literal expression in the top model workspace or data dictionary that
you reference in a Simulink block dialog box.

Suppose that you assign the value 5/2 to the Amplitude parameter of a Signal Generator block.
Amplitude is a tunable parameter.

Tunable Global Parameter

A tunable global parameter is a variable in the top model workspace or MATLAB base workspace that
you reference in a Simulink block dialog box. Suppose that you enter A in the Amplitude parameter
of a Signal Generator block. Variable A is a tunable parameter. You can tune the values of MATLAB
variables that are grouped in a parameter structure. For example:

Assign a parameter structure that contains the field Ampl to variable A.

Enter A.Ampl in the Amplitude parameter of a Signal Generator block.

Change the amplitude of the signal generator by tuning the value of A.Ampl in the MATLAB
workspace during simulation.

Tunable Global Parameters from Referenced Models

There are some limitations on tuning parameters in referenced models. For more information about
using instance-specific block parameters and using model arguments to configure these, see:

• “Limitations for Block Parameter Tunability in Generated Code”

7 Signals and Parameters

7-40

• “Specify Instance-Specific Parameter Values for Reusable Referenced Model”
• “Parameterize a Referenced Model Programmatically”

Inlined Parameters
To optimize execution efficiency, you can change the Default parameter behavior option from
Tunable to Inlined on the Code Generation > Optimization pane.

You cannot tune inlined block parameters. You can define a tunable global parameter or
Simulink.Parameter object, enter it in the parameter field in the block dialog box, and tune the
MATLAB variable or object.

For more information about inlined parameters, see “Default parameter behavior”.

Tune Global Parameters by Using External Mode
In external mode, Simulink Real-Time connects your Simulink model to your real-time application.
The block diagram becomes a user interface for the real-time application.

You can change a block parameter value during execution in the block dialog box. When you click
OK, Simulink transfers the new value to the real-time application. For more information, see “Tune
Parameters by Using Simulink External Mode” on page 7-34.

You can change a tunable global parameter during execution by assigning a new value to the
MATLAB workspace. You must then explicitly command Simulink to transfer the data. Do one of the
following:

• Press Ctrl+D.
• On the Real-Time tab, click Prepare > Signal Table. On the Parameters tab, edit the

parameters and click Update Diagram.

Tune Global Parameters by Using Simulink Real-Time Explorer
During real-time execution, Simulink Real-Time Explorer becomes a user interface for the real-time
application.

To access a block parameter value, navigate to the block in the Explorer model hierarchy. You can
change the value in a text entry box in the parameter window. When you apply the new value,
Simulink Real-Time transfers the new value to the real-time application. For more information, see
“Tune Parameters by Using Simulink Real-Time Explorer” on page 7-29.

You can access a tunable global parameter at the top level of the model hierarchy. Change it the same
way as you would a tunable block parameter.

You can use Simulink Real-Time Explorer instrument panels to tune block parameters and global
parameters.

Tune Global Parameters by Using MATLAB Language
To change the values of tunable block parameters and tunable global parameters during execution,
use the Simulink Real-Time command setparam. For more information, see “Tune Parameters by
Using MATLAB Language” on page 7-32.

 Tunable Block Parameters and Tunable Global Parameters

7-41

These code examples use the model slrt_ex_osc. To change a block parameter value, use a
nonempty block path and the parameter name. For example, to change the amplitude of the signal
generator:

slbuild(slrt_ex_osc);
tg = slrealtime('TargetPC1');
load(tg,'slrt_ex_osc')
start(tg);
setparam(tg, 'Signal Generator', 'Amplitude', 4.57)

To change a tunable global parameter, use the variable name. For example, to change the amplitude
of the signal generator via the parameter structure field A.Ampl:

slbuild(slrt_ex_osc);
tg = slrealtime('TargetPC1');
load(tg,'slrt_ex_osc')
start(tg);
setparam(tg, '', 'A.Ampl', 4.57)

See Also
setparam | getparam

More About
• “Tune Inlined Parameters by Using Simulink Real-Time Explorer” on page 7-43
• “Default parameter behavior”
• “Specify Source for Data in Model Workspace”
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71
• “Tune and Experiment with Block Parameter Values”
• “Share and Reuse Block Parameter Values by Creating Variables”
• “How Generated Code Stores Internal Signal, State, and Parameter Data”
• “Preserve Variables in Generated Code”

7 Signals and Parameters

7-42

Tune Inlined Parameters by Using Simulink Real-Time Explorer
This procedure describes how you can tune inlined parameters through the Simulink Real-Time
Explorer.

Note Simulink Real-Time does not support parameters of multiword data types.

The procedure starts with the Simulink model slrt_ex_osc_inlined. To open the model, in the
MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_inlined')))

Configure Model to Tune Inlined Parameters
This procedure makes the Amplitude parameter of the Signal Generator block tunable.

Open model slrt_ex_osc_inlined.

In the Simulink Editor, select the input to the Scope block and mark it for data logging by using the
Simulation Data Inspector.

Select the blocks containing the parameters that you want to tune. To represent the amplitude, use
the variable A.

a Double-click the Signal Generator block, and then enter A for the Amplitude parameter. Click
OK.

b Assign a constant to variable A. In the MATLAB Command Window, type:

A = 4

The value is displayed in the MATLAB workspace.

Open the Configuration Parameters dialog box. On the Real-Time tab, click Hardware Settings.

Select Code Generation > Optimization > Default parameter behavior > Inlined.

Click Configure. The Model Parameter Configuration dialog box opens. The MATLAB workspace
contains the constant you assigned to A.

Select the line that contains your constant. Click Add to table.

 Tune Inlined Parameters by Using Simulink Real-Time Explorer

7-43

Click Apply, and then click OK.

In the Configuration Parameters dialog box, click Apply, and then OK.

Save the model as slrt_ex_osc_inlined. On the Simulation tab, from Save, click Save As. For
example, save it as slrt_ex_osc_inlined.

Build and download the model to your target computer. On the Real-Time tab, click Run on Target.

Initial Value
This procedure assumes that you have completed the steps in “Configure Model to Tune Inlined
Parameters” on page 7-43.

Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT Explorer.

Load the slrt_ex_osc_inlined real-time application. Click Load Application, select the
application, and click Load.

Set the application stop time to inf.

7 Signals and Parameters

7-44

To start execution, click Start.

In the Applications pane, expand both the real-time application node and the Model Hierarchy
node.

Select the Parameters tab.

Open the Simulation Data Inspector and view the signals you marked for signal logging. On the Real-
Time tab, click Data Inspector.

 Tune Inlined Parameters by Using Simulink Real-Time Explorer

7-45

Updated Value
This procedure assumes that you have completed the steps in “Initial Value” on page 7-44.

Change the value of the MATLAB variable A to 2. In Simulink Real-Time Explorer, type 2 into the
Value box, and then press Enter.

The Simulation Data Inspector display changes to show the new signal amplitude.

To stop execution, click Stop.

See Also

More About
• “Tune Inlined Parameters by Using MATLAB Language” on page 7-47
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

7 Signals and Parameters

7-46

Tune Inlined Parameters by Using MATLAB Language
You can tune inlined parameters through the MATLAB interface.

Note Simulink Real-Time does not support parameters of multiword data types.

You must have already built and downloaded the model slrt_ex_osc_inlined. To open this model,
in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_inlined'))

Tune Inlined Parameter
With the real-application slrt_ex_osc_inlined already running, you can tune inlined parameter A
by using the setparam function.

Save the following code in a MATLAB file. For example, change_inlineA.

A = 4;
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_inlined'));
slbuild('slrt_ex_osc_inlined');
tg = slrealtime;
load(tg,'slrt_ex_osc_inlined');
setparam(tg,'','A',2);

Execute that MATLAB file. Type:

change_inlineA

To see the new parameter value, type:

getparam(tg,'','A')

See Also

More About
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

 Tune Inlined Parameters by Using MATLAB Language

7-47

Tune Parameter Structures by Using Simulink Real-Time
Explorer

In this section...
“Create Parameter Structure” on page 7-48
“Replace Block Parameters with Parameter Structure Fields” on page 7-49
“Save and Load Parameter Structure” on page 7-49
“Tune Parameters in a Parameter Structure” on page 7-50

To reduce the number of workspace variables you must maintain and avoid name conflicts, you can
group closely related parameters into structures. See “Organize Related Block Parameter Definitions
in Structures”.

In this example, the initial model slrt_ex_osc has four parameters that determine the shape of the
output waveform.

Block Parameter Structure Field
Expression

Initial Value

Signal Generator Freq spkp.sg_freq 20
Gain Gain spkp.g_gain 1000^2
Gain1 Gain spkp.g1_gain 2*0.2*1000
Gain2 Gain spkp.g2_gain 1000^2

Create Parameter Structure
This procedure groups some closely related parameters into structures.

Open model slrt_ex_osc, and save a copy of the model to a working folder.

Open the Base Workspace in the Model Explorer. On the Modeling tab, click Base Workspace.

Click Add Simulink Parameter .

In the Name column, type the name spkp.

In the Storage class field, select ExportedGlobal.

In the Value field, type as one line:

struct('sg_freq',20, 'g2_gain',1000^2, 'g1_gain',2*0.2*1000, 'g_gain',1000^2)

The field values duplicate the literal values in the dialog boxes. To change the field values, in row
spkp, click the Value cell and click Edit .

7 Signals and Parameters

7-48

Click Apply.

Save the model as slrt_ex_osc_struct. On the Simulation tab, from Save, click Save As.

Replace Block Parameters with Parameter Structure Fields
1 In the Signal Generator block, replace the value of parameter Frequency with

spkp.sg_freq.
2 In the Gain block, replace the value of parameter Gain with spkp.g_gain.
3 In the Gain1 block, replace the value of parameter Gain with spkp.g1_gain.
4 In the Gain2 block, replace the value of parameter Gain with spkp.g2_gain.

Save and Load Parameter Structure
1 In Model Explorer, right-click row spkp.
2 Click Export selected and save the variable as slrt_ex_osc_struct.mat.

 Tune Parameter Structures by Using Simulink Real-Time Explorer

7-49

To load the parameter structure when you open the model, add a load command to the PreLoadFcn
callback. To remove the parameter structure from the workspace when you close the model, add a
clear command to the CloseFcn callback. For more information, see “Model Callbacks”.

Tune Parameters in a Parameter Structure
If you have not completed the steps in “Create Parameter Structure” on page 7-48, “Replace Block
Parameters with Parameter Structure Fields” on page 7-49, and “Save and Load Parameter
Structure” on page 7-49, you can start by using the completed model.

To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_struct'));
load(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_struct.mat'));

Build and download the model to your target computer.

Open Simulink Real-Time Explorer. In the Real-Time tab, click Prepare > SLRT Explorer.

Set the real-time application Stop Time to Inf.

Click the Parameters tab.

Start the real-time application.

Open the Simulation Data Inspector and view the signals from the real-time application.

In the Values text box for spkp(1).g1_gain, change the value to 800 and press Enter.

Observe the change to the signals in the Simulation Data Inspector.

Stop the real-time application.

See Also

More About
• “Organize Related Block Parameter Definitions in Structures”
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• “Model Callbacks”

7 Signals and Parameters

7-50

Tune Parameter Structures by Using MATLAB Language
In this section...
“Create Parameter Structure” on page 7-51
“Save and Load Parameter Structure” on page 7-52
“Replace Block Parameters with Parameter Structure Fields” on page 7-52
“Tune Parameters in a Parameter Structure” on page 7-52

To reduce the number of workspace variables you must maintain and avoid name conflicts, you can
group closely related parameters into structures. See “Organize Related Block Parameter Definitions
in Structures”.

In this example, the initial model slrt_ex_osc has four parameters that determine the shape of the
output waveform.

Block Parameter Structure Field
Expression

Initial Value

Signal Generator Freq spkp.sg_freq 20
Gain Gain spkp.g_gain 1000^2
Gain1 Gain spkp.g1_gain 2*0.2*1000
Gain2 Gain spkp.g2_gain 1000^2

Create Parameter Structure
This procedure groups some closely related parameters into structures.

Open model slrt_ex_osc and save a copy to a working folder.

To create a parameter structure, in the MATLAB Command Window, enter:

kp = struct(...
 'sg_freq', 20, ...
 'g2_gain',1000^2, ...
 'g1_gain', 2*0.2*1000, ...
 'g_gain',1000^2)

kp =

 struct with fields:

 sg_freq: 20
 g2_gain: 1000000
 g1_gain: 400
 g_gain: 1000000

To make the parameter structure tunable on the target computer:

spkp = Simulink.Parameter(kp);
spkp.StorageClass = 'ExportedGlobal';
spkp.Value

 Tune Parameter Structures by Using MATLAB Language

7-51

ans =

 struct with fields:

 sg_freq: 20
 g2_gain: 1000000
 g1_gain: 400
 g_gain: 1000000

Save and Load Parameter Structure
To save the parameter structure spkp for later use, type:

save 'slrt_ex_osc_struct.mat', 'spkp'

To load the parameter structure when you open the model, add a load command to the PreLoadFcn
callback. To remove the parameter structure from the workspace when you close the model, add a
clear command to the CloseFcn callback. For more information, see “Model Callbacks”.

Replace Block Parameters with Parameter Structure Fields
1 In the Signal Generator block, replace the value of parameter Frequency with

spkp.sg_freq.
2 In the Gain block, replace the value of parameter Gain with spkp.g_gain.
3 In the Gain1 block, replace the value of parameter Gain with spkp.g1_gain.
4 In the Gain2 block, replace the value of parameter Gain with spkp.g2_gain.

Tune Parameters in a Parameter Structure
If you have not completed the steps in “Create Parameter Structure” on page 7-51, “Replace Block
Parameters with Parameter Structure Fields” on page 7-52, and “Save and Load Parameter
Structure” on page 7-52, you can start by using the completed model.

To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_struct'));
load(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_struct.mat'));

Build and download the model to the target computer.

slbuild('slrt_ex_osc_struct');
tg = slrealtime('TargetPC1');
load(tg,'slrt_ex_osc_struct');

Set stop time to inf.

setStopTime(tg,inf);

Sweep the Gain value of the Gain1 block from 200 to 800.

start(tg);
for g = 200 : 200 : 800
 setparam(tg, '', 'spkp.g1_gain', g);

7 Signals and Parameters

7-52

 pause(1);
end
stop(tg);

View the signals sent to the Scope block in the Simulation Data Inspector.

Simulink.sdi.view;

See Also

More About
• “Organize Related Block Parameter Definitions in Structures”
• “Model Callbacks”

 Tune Parameter Structures by Using MATLAB Language

7-53

Define and Update Inport Data
In this section...
“Required Files” on page 7-54
“Map Inport to Use Square Wave” on page 7-54
“Update Inport to Use Sawtooth Wave” on page 7-56

You can create root-level input ports and use the Root Inport Mapper to define input data. You can
update the input data without rebuilding the model by using the MATLAB language.

Required Files
This procedure has these file dependencies:

• slrt_ex_osc_inport — Damped oscillator that takes its input data from input port In1 and
sends its multiplexed output to output port Out1. To open this model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_inport'))

• slrt_ex_inport_square.mat— One second of output from a Signal Generator block that is
configured to output a square wave. To load this data, in the MATLAB Command Window, type:

load(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_square.mat'))

• slrt_ex_inport_sawtooth.mat — One second of output from a Signal Generator block that is
configured to output a sawtooth wave. To load this data, in the MATLAB Command Window, type:

load(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_sawtooth.mat'))

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
This procedure uses the Root Inport Mapper.

Open model slrt_ex_osc_inport and save a copy to a working folder.

Load slrt_ex_inport_square.mat and assign square to a temporary workspace variable for use
with the Root Inport Mapper.

waveform = square;

Double-click input port In1.

Clear Interpolate data, and then click Connect Inputs.

This example chooses not to interpolate the data because the time steps in the dataset are identical
to the sample time in the model. If the model were to be run with a different sample time, consider
whether to enable interpolation.

7 Signals and Parameters

7-54

In the Root Inport Mapper, click From Workspace and select variable waveform. Clear the other
variables.

In the Save to text box, enter a name such as ex_slrt_inport_waveform_osc.mat, and then
click OK.

Select the map to model option Port order and, from the Options menu, select Update Model.

Click Map to Model.

To update the model with the mapped input data, select scenario waveform, and then click Mark for
Simulation.

Click Save.

Save the scenario under a name such as slrt_ex_inport_waveform_scenario.mldatx.

Close the Root Inport Mapper. In the In1 block parameters dialog box, click OK.

 Define and Update Inport Data

7-55

To display the output of the Mux block with the Simulation Data Inspector, right-click the output
signal and select Log Selected Signals.

You can now save, build, download, and execute the real-time application. Display the output by using
the Simulation Data Inspector.

Update Inport to Use Sawtooth Wave
You can update the inport data to use a different data file without rebuilding the real-time application.
The slrt_ex_osc_inport.mldatx file must be in the working folder.

7 Signals and Parameters

7-56

Load slrt_ex_inport_sawtooth.mat, and then assign sawtooth to the temporary variable that
you used with the Root Inport Mapper.

load((fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_sawtooth.mat')));
waveform = sawtooth;

Create an application object.

app_object = slrealtime.Application('slrt_ex_osc_inport');

Update the application object.

updateRootLevelInportData(app_object);

Load the updated object to the target computer and execute it.

tg = slrealtime;
load(tg, 'slrt_ex_osc_inport');
start(tg);

Display the output by using the Simulation Data Inspector.

 Define and Update Inport Data

7-57

See Also

More About
• “Define and Update Inport Data by Using MATLAB Language” on page 7-59
• “Load Data to Root-Level Input Ports”
• “Inport Data Mapping Limitations” on page 7-64
• “Data Logging with Simulation Data Inspector (SDI)” on page 7-14

7 Signals and Parameters

7-58

Define and Update Inport Data by Using MATLAB Language
In this section...
“Required Files” on page 7-59
“Map Inport to Use Square Wave” on page 7-59
“Update Inport to Use Sawtooth Wave” on page 7-60

You can create root-level input ports and use the MATLAB language to define input data and to
update the input data without rebuilding the model.

Required Files
This procedure has these file dependencies:

• slrt_ex_osc_inport — Damped oscillator that takes its input data from input port In1 and
sends its multiplexed output to output port Out1. To open this model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_inport'))

• slrt_ex_inport_square.mat— One second of output from a Signal Generator block that is
configured to output a square wave. To load this data, in the MATLAB Command Window, type:

load(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_square.mat'))

• slrt_ex_inport_sawtooth.mat — One second of output from a Signal Generator block that is
configured to output a sawtooth wave. To load this data, in the MATLAB Command Window, type:

load(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_sawtooth.mat'))

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
This procedure maps an inport.

Open slrt_ex_osc_inport.

model = fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc_inport');
open_system(model);
myFolder = fullfile(userpath,'temp');
save_system(model,[myFolder '/slrt_ex_osc_inport.slx']);

Load slrt_ex_inport_square.mat, and then assign square to a temporary workspace variable.

load((fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_square.mat')));
waveform = square;

Open slrt_ex_osc_inport/In1

 Define and Update Inport Data by Using MATLAB Language

7-59

inport = [model '/In1'];
load_system(inport);

Turn off inport data interpolation.

set_param(inport,'Interpolate','off');

Set the external input variable.

set_param(model,'ExternalInput','waveform');

Load external input data.

set_param(model,'LoadExternalInput','on');

You can now build, download, and execute the real-time application.

slbuild(model);
tg = slrealtime('TargetPC1');
load(tg,model);
start(tg);

View the signals in the Simulation Data Inspector.

Simulink.sdi.view;

Update Inport to Use Sawtooth Wave
You can update the inport data to use a different data file without rebuilding the real-time application.
The slrt_ex_osc_inport.mldatx file must be in the working folder.

Load slrt_ex_inport_sawtooth.mat, and then assign sawtooth to the temporary variable that
you used with the Root Inport Mapper.

load((fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_inport_sawtooth.mat')));
waveform = sawtooth;

Create an application object.

app_object = SimulinkRealTime.Application('slrt_ex_osc_inport');

Update the application object.

updateRootLevelInportData(app_object);

Download the updated object to the target computer and execute it.

tg = slrealtime;
load(tg, 'slrt_ex_osc_inport');
start(tg);

View the signals in the Simulation Data Inspector.

7 Signals and Parameters

7-60

Simulink.sdi.view;

See Also

More About
• “Define and Update Inport Data” on page 7-54
• “Load Data to Root-Level Input Ports”
• “Inport Data Mapping Limitations” on page 7-64
• “Data Logging with Simulation Data Inspector (SDI)” on page 7-14

 Define and Update Inport Data by Using MATLAB Language

7-61

Stimulate Root Inport by Using MATLAB Language
This example shows how to stimulate root inports in a model by using the Stimulation object and
related functions:

• start
• stop
• getStatus
• reloadData
• pause

Open Model and Map Inport to Wave Data

Open model slrt_ex_osc_inport. Save the model to a working folder. Map the inport to use
square wave data. For inport In1, interpolated is off.

model = ('slrt_ex_osc_inport');
open_system(model);
load(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_inport_square.mat'));
waveform = square;
set_param(model,'ExternalInput','waveform');
set_param(model,'LoadExternalInput','on');
set_param(model,'StopTime','Inf');

Build Model and Download Real-Time Application

Build, download, and execute the real-time application.

evalc('slbuild(model)');
tg = slrealtime('TargetPC1');
load(tg,model);

Stimulate Root Inport Data

Start root inport stimulation of inports 1. Open Scope block and observe results.

7 Signals and Parameters

7-62

start(tg.Stimulation,[1]);
start(tg);

Pause root inport stimulation of inport 1.

pause(tg.Stimulation,[1]);

Stop and start the stimulation of inport 1.

stop(tg.Stimulation,[1]);
start(tg.Stimulation,[1]);

Check the status of stimulation of the inports.

getStatus(tg.Stimulation,'all');

Create a time-series object to load data to an inport.

sampleTime = 0.1;
endTime = 10;
numberOfSamples = endTime * 1/sampleTime + 1;
timeVector = (0:numberOfSamples) * sampleTime;
u = timeseries(timeVector*10,timeVector);

Object u is created for 10 seconds. Load it to the inport 1. Stimulation of an inport should be stopped
before loading data.

stop(tg.Stimulation,[1]);
reloadData(tg.Stimulation,[1],u);

Stop real-time application and close all.

stop(tg);
bdclose('all');

 Stimulate Root Inport by Using MATLAB Language

7-63

Inport Data Mapping Limitations
In Simulink Real-Time, you cannot:

• Create data at run time for each time step by using the input u = UT(t) for MATLAB functions or
expressions.

• Import complex values and asynchronous function-call signals into top-level input ports.
• Import signals of type Stateflow.SimulationData.State into top-level input ports.

See Also

More About
• “Define and Update Inport Data” on page 7-54
• “Load Data to Root-Level Input Ports”

7 Signals and Parameters

7-64

Display and Filter Hierarchical Signals and Parameters
In this section...
“Hierarchical Display” on page 7-65
“Filtered Display” on page 7-66
“Sorted Display” on page 7-67

In Simulink Real-Time Explorer, the default view of the signal and parameter lists shows the signals
and parameters only at the hierarchy level that you selected. You can display signals and parameters
for the current level and below and filter the display to show only the items that you are interested in.

Hierarchical Display
To show signals and parameters from the current level and below, navigate to the hierarchical level

that you are interested in. Click Contents of (on the toolbar).

The figure shows the contents of the top level of the slrt_ex_sf_car real-time application. To open
this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_sf_car'))

 Display and Filter Hierarchical Signals and Parameters

7-65

Filtered Display
To restrict the display to signals or parameters with a particular characteristic, use the Filter text
box. You can restrict the scope of the filtered display by selecting a level of the application in the
Application Tree panel.

Simulink Real-Time Explorer supports filtering by values in these columns:

• Signals — Block Path and Signal Name

7 Signals and Parameters

7-66

• Parameters — Block Path and Name

For example, to restrict the display of signals and parameters to the shift_logic subsystem, select
column Signal Name. Type shift_logic into the Filter text box.

Sorted Display
To group signals and parameters by columns, select the column head, hover the cursor near the right
border of the column head (displays the Sort by icon), and click the Sort by icon.

 Display and Filter Hierarchical Signals and Parameters

7-67

Explorer supports grouping by the following columns:

• Signals — Block Path and Signal Name
• Parameters — Block Path, Name, Value, Type, and Size

For example, to sort signals by name, right-click the Signal Name column and select the Sort by
icon.

7 Signals and Parameters

7-68

Troubleshoot Signals Not Accessible by Name
I cannot monitor, trace, or log some signal types in the real-time application.

What This Issue Means
You cannot monitor, trace, or log by name these types of signals in the real-time application:

• Virtual or bus signals (including signals from bus creator blocks and virtual blocks). For example,
assume that you connect the output of a Mux block (a virtual block) to a Simulink Scope block.
The Scope block displays the names of the Mux input signals rather than the names of the Mux
output signals.

• Signals that Simulink optimizes away after you set the Signal storage reuse or Block reduction
configuration parameters.

The output of a block that was optimized away is replaced with the corresponding input signal to
the block. To access these signals, make them test points.

• Signals of complex or multiword data types.
• If a block name consists only of spaces, Simulink Real-Time Explorer does not display a node for

signals from that block. To reference such a block:

• Provide an alphanumeric name for the block.
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

Try This Workaround
Check these signal types are not being monitored, traced, or logged by name in the real-time
application::

• Virtual or bus signals (including signals from bus creator blocks and virtual blocks)
• Signals that Simulink optimizes away
• Signals of complex or multiword data types
• Blocks without alphanumeric names

See Also
Gain

More About
• “Nonvirtual and Virtual Blocks”
• “Types of Composite Signals”
• “Signal storage reuse”
• “Block reduction”
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71
• “Internationalization Issues” on page 7-73

 Troubleshoot Signals Not Accessible by Name

7-69

External Websites
• MathWorks Help Center website

7 Signals and Parameters

7-70

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Parameters Not Accessible by Name
I cannot observe or tune some parameters in the real-time application.

What This Issue Means
Reasons that you cannot observe or tune some parameters in the real-time application are:

• Simulink Real-Time does not support parameters of multiword data types.
• During execution, you cannot tune parameters that change the model structure, for example, by

adding a port. To change these parameters, you must stop the execution, change the parameter,
and rebuild the real-time application.

Try This Workaround
Check the parameters for the issues described in “What This Issue Means” on page 7-71.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 7-69
• “Internationalization Issues” on page 7-73

External Websites
• MathWorks Help Center website

 Troubleshoot Parameters Not Accessible by Name

7-71

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Instance-Specific Parameters Not Saved
The saveParamSet function does not save instance-specific parameters and parameters that have
custom storage classes to a MAT file for loading by using the loadParamSet function. When I use
the saveParamSet function on a model that contains only instance-specific parameters, I get an
error message.

Error using SimulinkRealTime.target/saveparamset
TargetPC1: Error writing file

What This Issue Means
The saveParamSet function saves parameters that appear in the rtP structure of the model.
Instance-specific parameters and parameters with custom storage classes are global variables that
are not by default represented in the rtP structure.

Try This Workaround
You can use the saveParamSet function to save parameter sets from models that include instance-
specific parameters or parameters that have custom storage classes. But, these parameters do not
appear in the saved parameter set.

See Also
ParameterSet

More About
• “Save and Reload Parameters by Using the MATLAB Language” on page 7-36

7 Signals and Parameters

7-72

Internationalization Issues
Simulink Real-Time inherits the internationalization support of the products that it works with:
Simulink, Simulink Coder, and Embedded Coder®. Signal and parameter names that include
Unicode® characters are displayed as expected in Simulink Real-Time Explorer and at the MATLAB
command line.

When you use the Simulation Data Inspector to observe signals, the non-ASCII signal names are
displayed as expected. For example, assume that the signal with ID 1 appears in an English-language
and a Japanese-language version of the same model. In the English-language version, the signal label
is input1 and the block path is block1/block2. In the Japanese-language version, the signal label
is 入力 1 and the block path is ブロック 1/ブロック 2.

Third-party code (for example, parsers for vendor configuration files) sometimes does not support
cross-locale, cross-platform internationalization. For such code, you must give files and folders locale-
specific names. For example, when parsing a configuration file on an English-locale machine, name
the file and enclosing folder with English-locale-specific names.

See Also

More About
• “Troubleshoot Signals Not Accessible by Name” on page 7-69
• “Troubleshoot Parameters Not Accessible by Name” on page 7-71

 Internationalization Issues

7-73

Execution Modes

8

Execution Modes
The Simulink Real-Time RTOS has two mutually exclusive execution modes.

• Interrupt mode — The scheduler implements real-time single-tasking and multitasking execution
of single-rate or multirate systems, including asynchronous events (interrupts). You can interact
with the target computer while the real-time application is executing at high sample rates. To use
this real-time mode:

• Leave the Force polling mode configuration parameter disabled (default).
• Leave the pollingThreshold application option at the default value.

• Polling mode — The RTOS executes real-time applications at sample times close to the limit of the
CPU. Using polling mode with high-speed and low-latency I/O boards and drivers enables you to
achieve real-time application sample times that you cannot achieve by using interrupt mode.
Because polling mode disables interrupts on the processor core where the model runs, it imposes
restrictions on the model architecture and on target communication. The base rate of the real-
time application is always running when executing in polling mode. To use this real-time mode,
either:

• Enable the Force polling mode configuration parameter.
• Set the pollingThreshold application option sample time value to a rate below the base rate

of the model.

For more information, see Force polling mode and Application.

See Also
Thread Trigger | “TLC Command-Line Options”

Related Examples
• “Concurrent Execution on Simulink® Real-Time™” on page 16-11

More About
• “Set Configuration Parameters”
• “Performance Optimization”
• “About RTOS Tasks and Priorities”
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-32

8 Execution Modes

8-2

Real-Time Application Execution

3

Working with the Target Computer
Command Line

• “Control Real-Time Application at Target Computer Command Line” on page 9-2
• “Execute Target Computer RTOS Commands at Target Computer Command Line” on page 9-3

9

Control Real-Time Application at Target Computer Command
Line

The Simulink Real-Time software provides a set of commands that you can use to interact with the
real-time application on the target computer. You can load, start, stop, and check the status of the
real-time application.

These commands let you interact with real-time applications on standalone target computers that are
not connected to Simulink Real-Time software on a development computer.

To enter commands, type the commands by using a keyboard attached to the target computer or by
using an SSH utility (such as PuTTY) to send commands to the target computer from a development
computer.

Note To run user commands, log in as user slrt by using password slrt. To run the system
commands (for example, date, ntdate, ntpd, rtc, or setting the time zone), login as user root by
using password root.

The target computer commands are case-sensitive. For more information, see “Target Computer
Command-Line Interface”.

To read the target computer console log, open the Simulink Real-Time Explorer and click the
System Log Viewer tab. You can also export the system log by using the SystemLog function.

See Also
Simulink Real-Time Explorer | slrtExplorer | SystemLog

Related Examples
• “Target Object Commands”
• “Target Computer RTOS System Commands”

9 Working with the Target Computer Command Line

9-2

Execute Target Computer RTOS Commands at Target Computer
Command Line

To enter target computer RTOS commands, type the commands by using a keyboard attached to the
target computer or by using an SSH utility (such as PuTTY) to send commands to the target computer
from a development computer.

The target computer commands are case-sensitive. For more information, see “Target Computer
Command-Line Interface”.

The command examples use the PuTTy SSH utility. You can download and install this utility from
www.putty.org.

Note To run user commands, log in as user slrt by using password slrt. To run the system
commands (for example, date, ntdate, ntpd, rtc, or setting the time zone), login as user root by
using password root.

1 Boot the target computer.
2 Connect the development computer and target computer. In the MATLAB Command Window,

type:

tg = slrealtime;
connect(tg);

3 Start the SSH utility. This example uses PuTTY.
4 Load the PuTTY session for the target computer and click Open.

 Execute Target Computer RTOS Commands at Target Computer Command Line

9-3

https://www.putty.org

5 To configure the target computer date, log in to the PuTTY session as user root with password
root.

6 Set the time zone. This example sets the time zone to Eastern Standard Time.

env TZ=EST5EDT
export TZ=EST5EDT
setconf _CS_TIMEZONE EST5EDT

7 Set the date and time. This example sets the date and time to September 10, 2019 at 11:25 AM.

date 091011252019
Tue Sep 10 11:25:15 EDT 2019

8 Set the hardware clock from the system date and time.

rtc -s hw

See Also
Targets

Related Examples
• “Target Object Commands”
• “Target Computer RTOS System Commands”

9 Working with the Target Computer Command Line

9-4

External Websites
• QNX Momentics IDE 7.1 User’s Guide
• QNX Momentics IDE 7.1 User’s Guide, Utilities Reference

 Execute Target Computer RTOS Commands at Target Computer Command Line

9-5

https://www.qnx.com/developers/docs/7.1/index_frames.html
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/about.html

Tuning Performance

• “CPU Overload” on page 10-2
• “Monitor CPU Overload Rate” on page 10-3
• “Execution Profiling for Real-Time Applications” on page 10-7
• “Reduce Build Time for Simulink Real-Time Referenced Models” on page 10-13

10

CPU Overload
Sometimes a real-time application running on the target computer does not have enough time to
complete processing before the next time step. This condition is called a CPU overload. An overload is
registered every time an execution step is triggered while the previous step is running.

See Also
SLRT Overload Options

Related Examples
• “Monitor CPU Overload Rate” on page 10-3
• “Concurrent Execution on Simulink® Real-Time™” on page 16-11

More About
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-32

10 Tuning Performance

10-2

Monitor CPU Overload Rate
The SLRT Overload Options block outputs the current CPU overload count for the identified sample
rate.

This example shows how to design a model that uses the SLRT Overload Options block to monitor the
rate at which CPU overloads occur. The rate of CPU overloads information can be useful when tuning
performance of a model for which a low CPU overload rate is acceptable.

Open, Build, and Run the Model

In the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox','slrealtime','examples','slrt_ex_overload'));

Name the signal coming out from the outport of rate limiter block as Rate Limiter and log it in the
Simulation Data Inspector.

p = get_param('slrt_ex_overload/Rate Limiter','PortHandles');
l = get_param(p.Outport,'Line');
set_param(l,'Name','Rate Limiter');
Simulink.sdi.markSignalForStreaming('slrt_ex_overload/Rate Limiter',1,'on');

Build the model.

model = 'slrt_ex_overload';
set_param(model, 'RTWVerbose', 'off');
evalc('slbuild(model)');

Download the application and run it on the target computer.

tg = slrealtime;
connect(tg);
load(tg,model);
start(tg);
pause(20);
stop(tg);

 Monitor CPU Overload Rate

10-3

Open Simulation Data Inspector

To view the rate at which CPU overloads occur, open the Simulation Data Inspector.

In the MATLAB Command Window, type:

Simulink.sdi.view;

Examine CPU Overload Rate Data

In the Simulation Data Inspector, the graph shows:

• Bottom rising stair step signal -- This signal indicates the number of CPU overloads that occurred.
• Top rising stair step signal -- This signal indicates the number of CPU overloads that are allowed,

which is (occurred + 2).
• Rising slew rate -- This signal indicates the rate at which CPU overloads occur. When the rising

slew rate becomes greater than the top rising stair step signal, the rate of CPU overloads is
greater than are allowed.

Modify Rate of CPU Overloads

To modify the rate at which CPU overloads occur in the model, modify the Constant2 parameter
value.

10 Tuning Performance

10-4

Modify Allowed Rate of CPU Overloads

To modify the rate of CPU overloads that are acceptable in the model, modify the RisingSlowLimit
parameter value.

Build and Run Model with Changed Overload Rates

In the MATLAB Command Window, type:

load(tg,model);

To modify the rate of CPU overloads that are acceptable in the model

tg.setparam('slrt_ex_overload/Rate Limiter','RisingSlewLimit',0.004);

To modify the rate at which CPU overloads occur in the model

tg.setparam('slrt_ex_overload/Constant2','Value',4);

run the modified application on the target computer

start(tg);
pause(20);
stop(tg);

In the Simulation Data Inspector, compare the signal data from the simulation runs and observe the
change to the CPU overload rate.

 Monitor CPU Overload Rate

10-5

bdclose('all');

See Also
SLRT Overload Options

Related Examples
• “Concurrent Execution on Simulink® Real-Time™” on page 16-11

More About
• “CPU Overload” on page 10-2
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-32

10 Tuning Performance

10-6

Execution Profiling for Real-Time Applications
This example shows how you can profile the task execution time and function execution time of your
real-time application that is running on the target computer. Using that information, you can then
tune its performance.

Profiling is especially useful if you configure your real-time application to take advantage of multicore
processors on the target computer. To profile the real-time application:

• In the Configuration Parameters dialog box for the model, enable the collection of function
execution time data during execution.

• Build, download, and execute the model.
• Start and stop the profiler.
• Display the profiler data.

The Execution Profiler and SLRT Overload Options block use different mechanisms to measure TET
and do not generate identical TET values.

Configure Real-Time Application for Function Execution Profiling

The model is slrt_ex_mds_and_tasks. To open this model, open the subsystem models first:

• slrt_ex_mds_subsystem1
• slrt_ex_mds_subsystem2
• slrt_ex_mds_and_tasks

1. Open model slrt_ex_mds_and_tasks.

2. In the top model, open the Configuration Parameters dialog box. Select Code Generation >>
Verification.

3. For Measure function execution times, select Coarse (reference models and subsystems
only). The Measure task execution time check box is selected and locked. Or, in the MATLAB
Command Window, type:

set_param('slrt_ex_mds_and_tasks','CodeProfilingInstrumentation','Coarse');

4. Click OK. Save model slrt_ex_mds_and_tasks in a local folder.

Generate Real-Time Application Execution Profile

Generate profile data for model slrt_ex_mds_and_tasks on a multicore target computer.

You must have previously configured the target computer to take advantage of multiple cores and
configured the model for task and function execution profiling.

1. Open, build, and download the model.

model = 'slrt_ex_mds_and_tasks';
open_system(model);
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);
setStopTime(tg,20);

 Execution Profiling for Real-Time Applications

10-7

When you include profiling, the Code Generation Report is generated by default. It contains links to
the generated C code and include files. By clicking these links, you can examine the generated code
and interpret the Code Execution Profile Report.

10 Tuning Performance

10-8

2. Start the real-time application, then start the profiler.

startProfiler(tg);
start(tg);
pause(5);
stopProfiler(tg);
stop(tg);

3. Display the profiler data.

while 1
 tmp = strcmp(tg.ProfilerStatus,'DataAvailable');
 if tmp == true
 break
 end
end
profiler_data = getProfilerData(tg);
plot(profiler_data);
report(profiler_data);

Processing data on target computer ...
Transferring data from target computer ...

 Execution Profiling for Real-Time Applications

10-9

Processing data on host computer ...

The Execution Profile schedule display in the Simulation Data Inspector shows how scheduling is
generated in real-time simulation. To open the schedule display in the Simulation Data Inspector after
creating the executionProfile object, use the executionProfile.schedule() function.

The Code Execution Profiling Report displays model execution profile results for each task.

• To display the profile data for a section of the model, in the Section column, click the Membrane
button next to the task.

• To display the TET data for the section in Simulation Data Inspector, click the Plot time series
data button.

10 Tuning Performance

10-10

• To view the section in Simulink Editor, click the link next to the Expand Tree button.

• To view the lines of generated code corresponding to the section, click the Expand Tree button,
and then click the View Source button.

See Also
schedule | report | plot | ProfilerData | stopProfiler | startProfiler | resetProfiler |
getProfilerData | getAvailableProfile | deleteProfilerData

 Execution Profiling for Real-Time Applications

10-11

Related Examples
• “Concurrent Execution on Simulink® Real-Time™” on page 16-11

10 Tuning Performance

10-12

Reduce Build Time for Simulink Real-Time Referenced Models
In a parallel computing environment, you can increase the speed of code generation and compilation
for models containing large model reference hierarchies. Achieve the speed by building referenced
models in parallel whenever conditions allow. For example, if you have Parallel Computing Toolbox
software, you can distribute code generation and compilation for each referenced model across the
cores of a multicore host computer. If you also have MATLAB Parallel Server™ software, you can
distribute code generation and compilation for each referenced model across remote workers in your
MATLAB Parallel Server configuration.

You can build referenced models in parallel on a compute cluster. In this way, you can more quickly
build and download real-time applications to the target computer.

For this procedure, you must have a functioning Simulink Real-Time installation on your development
computer.

1 Identify a set of worker computers, which can be separate cores on your development computer
or computers in a remote cluster running under Windows®.

2 If you intend to use separate cores on the development computer, install Parallel Computing
Toolbox on the development computer.

3 If you intend to use computers in a remote cluster:

a On each cluster computer, install:

• MATLAB
• Parallel Computing Toolbox
• MATLAB Parallel Server
• Simulink Real-Time
• Simulink Real-Time Target Support Package

b Start and configure the remote cluster according to the instructions at “Get Started with
MATLAB Parallel Server” (MATLAB Parallel Server).

4 Run MATLAB on the development computer.
5 In MATLAB, call the parpool function to open a parallel pool on the cluster.
6 To configure the compiler for the remote workers as a group, call the pctRunOnAll function.

In this configuration, the development computer and the remote workers have installed a
supported version of a C++ compiler that is compatible with the code generation target. For the
current list of supported compilers, see Supported and Compatible Compilers.

7 From the top model of the model reference hierarchy, open the Configuration Parameters dialog
box. Go to the Model Referencing pane and select the “Enable parallel model reference builds”
option. This selection enables the parameter “MATLAB worker initialization for builds”. For more
information, see “Reduce Build Time for Referenced Models by Using Parallel Builds”.

8 Build and download your model.

See Also
parpool | pctRunOnAll

 Reduce Build Time for Simulink Real-Time Referenced Models

10-13

https://www.mathworks.com/support/requirements/supported-compilers.html

More About
• “Reduce Build Time for Referenced Models by Using Parallel Builds”

10 Tuning Performance

10-14

External Code Integration

11

External Code Integration of Libraries and C/C++ Code with
Simulink Real-Time Models

In this section...
“Considerations for Integrating Third-Party Libraries and External Code into Simulink Real-Time” on
page 11-2
“Value of Upgrading Your C/C++ Code for Integration into Simulink Real-Time” on page 11-2
“Approaches for C/C++ Code Integration into Simulink Real-Time” on page 11-3
“Build Libraries from Source Code for Simulink Real-Time” on page 11-3
“External Code Integration for S-Functions and Simulink Real-Time” on page 11-4
“Hello World! Example External Code Integration for Simulink Real-Time” on page 11-5
“Additional C/C++ Project for Simulink Real-Time” on page 11-7

Considerations for Integrating Third-Party Libraries and External Code
into Simulink Real-Time
Developers who integrate C/C++ code with Simulink Real-Time applications notice some differences
when they migrate the code that they integrated with Simulink Real-Time applications from previous
releases to R2020b and later releases. These differences include:

• In release R2020a and previous releases, the On-Time RTOS on the target computer shared some
libraries and system calls with Windows. In release R2020b and later releases, the QNX Neutrino
RTOS on the target computer does not share libraries or system calls specific to Windows.

• In release R2020a and previous releases, developers could use Microsoft® Visual Studio® to
compile libraries to integrate with Simulink Real-Time applications. In release R2020b and later
releases, you cannot use the Microsoft Visual Studio compiler for this purpose. You can configure
Microsoft Visual Studio to use the QNX Neutrino compiler from the Simulink Real-Time target
support package.

• In R2020b and later releases, developers use cross-compiling to produce libraries on their
development computer for deployment to their target computer.

Value of Upgrading Your C/C++ Code for Integration into Simulink
Real-Time
By updating your C/C++ code for integration into your Simulink Real-Time application, you gain
these benefits:

• Leverage the QNX Neutrino 64-bit and POSIX® compatible RTOS.
• Code directly in C++ or wrap your legacy C code.
• Use the code editor of your choice.

For instance, customizing Visual Studio Code with the source files and shipped QCC compiler from
the Simulink Real-Time Target Support Package provides a similar experience to a full IDE.

• Leverage the precompiled QNX Neutrino libraries and headers that are included in Simulink Real-
Time to extend the functionality of your real-time application.

11 External Code Integration

11-2

https://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.neutrino.utilities/topic/q/qcc.html

• Integrate any C/C++ application based on modern build and package software such as CMake.

Approaches for C/C++ Code Integration into Simulink Real-Time
There are advantages and disadvantages to each of these external code integration approaches.

Approach 1: Directly Call C/C++ Code. In this approach, you use C Caller or C Function blocks in the
model. For more information, see “Integrate External C/C++ Code Using C Function Blocks”.

• Advantages: There is no need to compile source code before building the model.
• Disadvantages: This approach is hard to use for complex projects that have many files and

dependencies. Also, in this approach you need to write a C wrapper in Simulink for C++ code. For
more information, see “Call C++ Class Methods Using a C-style Wrapper Function From a C
Function Block”.

Approach 2: Build, link, and use static libraries (.a files)

• Advantages: All required files are packed in the real-time application MLDATX file. In this
approach, there is no need to install libraries on the target. And, this approach lets you protect
your intellectual property.

• Disadvantages: This approach is non-modular. A change in the library requires rebuilding the
whole real-time application. Also, this approach tends to produce larger real-time application
MLDATX files.

Approach 3: Build, deploy and use shared objects (.so files)

• Advantages: This approach is modular. You can build the real-time application and shared object
independently. Also, this approach tends to produce smaller real-time application MLDATX files.
And this approach lets you protect your intellectual property.

• Disadvantages: In this approach, you need to access the target computer file system before
running the real-time application and install (copy) the shared objects to any of the common lib
paths on the target computers.

Build Libraries from Source Code for Simulink Real-Time
To integrate external code in a real-time application, the most flexible approaches are to build static
libraries or shared objects from source code.

• The library build workflow is similar to the workflow used by most developers for release R2020a
and previous releases. In those releases, the library build workflow for the target computer On-
Time RTOS produced static libraries built with Microsoft Visual Studio and produced .lib files.

• You achieve better usability when working with complex C++ projects that have many
dependencies and source code files.

• S-functions offer better granularity when handling third-party libraries in Simulink. S-functions
enable the flexibility to use the same S-function source code with different platforms, including
simulation on the desktop in different operating systems. The S-functions are deployed and
function in real-time on a target computer.

Cross-compiling is compiling a library for a target operating system (for example, QNX Neutrino
RTOS) on a development operating system (for example, Windows). Some cross-compiling
considerations for Simulink Real-Time are:

 External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models

11-3

https://cmake.org/

• Choice of development environment. Many modern C++ projects use the CMake build
environment. For more information, see the CMake website.

• Extensibility of development environment. For example, it is a common practice to extend most
common CMake support for the QNX Neutrino RTOS by leveraging similarities with the UNIX® OS
and its POSIX compatibility.

• In your libraries, save cross-compiling libraries, including dependencies that might be already
included in the Simulink Real-Time Target Support Package. These libraries can be linked to other
C++ projects.

The suggested workflow for integration of complex C++ applications into Simulink Real-Time is:

1 Start from a C++ project with CMake as the build environment.
2 Set the dependencies, such as headers and libraries, in your Simulink model.
3 On the development computer, cross-compile libraries for the QNX Neutrino RTOS on the target

computer.
4 Create an S-function, for instance using the S-function Builder block or a handwritten C-MEX S-

function, as the main function that calls the C++ functions defined in the header files and
implemented in the compiled libraries for the QNX Neutrino RTOS.

5 Build the real-time application.
6 By using SSH or FTP, copy your cross-compiled libraries to a location on the target computer

where they can be found and loaded at run time. The recommended locations are /lib, /usr/
lib, or /usr/local/lib.

7 Load and run the real-time application.

External Code Integration for S-Functions and Simulink Real-Time
When you include static libraries or shared objects in S-functions for external code integration with a
real-time application, there are some tips for your development.

When building from Simulink:

• Use rtwmakecfg.m and makeInfo object to map libraries and header files. For more information,
see “Use rtwmakecfg.m API to Customize Generated Makefiles”.

function makeInfo = rtwmakecfg
proj = currentProject;
rootPath = proj.RootFolder;
makeInfo.linkLibsObjs = {};
sysTarget = get_param(bdroot, 'RTWSystemTargetFile');
switch sysTarget
 case 'slrealtime.tlc'
 makeInfo.includePath = '<includePath>';
 makeInfo.linkLibsObjs{end+1} = '<libraryPath>';
 otherwise
 error('No rtwmakecfg found for %s target file', sysTarget);
end
end

• Enable linking for different target files.
• Use macros, such as SIMULINK_REAL_TIME, in your source code to add lines at compile time for

real-time simulation. SIMULINK_REAL_TIME is useful to wrap the LOG function calls.

11 External Code Integration

11-4

https://cmake.org/

When cross-compiling, use macros such as __unix__ and __QNXNTO__ in your source code to add
lines at compile time.

Hello World! Example External Code Integration for Simulink Real-
Time
This example shows how to use an S-Function Builder block for external code integration. The
example adds a hello message to the system log.

Before running this example, install the Simulink Real-Time Target Support Package. The support
package includes the tools that compile the code that runs on the target computer.

Open the Model

Use the Open Model button to open the slrt_ex_helloworld_sfunbuilder model.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_helloworld_sfunbuilder'));

Open the S-Function Block

Double-click the helloworld-sfun S-Function block. The S-Function Builder opens and displays the
S-function code.

/* Includes_BEGIN */
#ifdef SIMULINK_REAL_TIME
#include "slrt_log.hpp"
#endif
/* Includes_END */

/* Externs_BEGIN */
/* extern double func(double a); */
/* Externs_END */

void helloworld_sfun_Start_wrapper(SimStruct *S)
{
/* Start_BEGIN */

/* Start_END */
}

void helloworld_sfun_Outputs_wrapper(const real_T *u0,
 real_T *y0,

 External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models

11-5

 SimStruct *S)
{
/* Output_BEGIN */
// Create custom message
static char hellomsg[100];
sprintf(hellomsg,"Hello World! t=%f \n",*u0);
// Use macros for platform dependent code
#ifdef SIMULINK_REAL_TIME
slrealtime::log_info(hellomsg);
#else
ssPrintf(hellomsg);
#endif

// Generic platform independent code
*y0 = *u0;
/* Output_END */
}

void helloworld_sfun_Terminate_wrapper(SimStruct *S)
{
/* Terminate_BEGIN */
/*
 * Custom Terminate code goes here.
 */
/* Terminate_END */
}

Build Model and Run Real-Time Application

Before building the model, you can run the model on your desktop and view the output message in
the Simulink Real-Time system log viewer.

When you are ready to build the model, on the Simulink Editor Real-Time tab, connect to the target
computer and click Run on Target. Or, in the MATLAB Command Window, type:

tg = slrealtime;
connect(tg);
model = 'slrt_ex_helloworld_sfunbuilder';
evalc('slbuild(model)');
load(tg,model);
start(tg);
pause(20);
stop(tg);

View Message in Status Log

Open the target computer status log and view the Hello World! message. On the Simulink Editor
Real-Time tab, select Prepare > SLRT Explorer. Then, select the System Log Viewer tab. Or, in
the MATLAB Command Window, type:

slrtLogViewer;

The viewer shows the Hello World! messages in the system log.

11 External Code Integration

11-6

Close All Files

bdclose('all');

Additional C/C++ Project for Simulink Real-Time
The eCAL Toolbox for Simulink project on MathWorks GitHub shows complete external code
integration with Simulink Real-Time, including S-function wrappers, rtwmakecfg customization, and
shared object compilation. You also can simulate this example on your development computer.

See Also

More About
• “Build Support for S-Functions”
• “Compile Source Code for Functional Mock-up Units” on page 3-3
• “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-24
• “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-13

 External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models

11-7

https://external-git.mathworks.com/

External Websites
• MathWorks Help Center website
• CMake website

See Also

11 External Code Integration

11-8

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://cmake.org/

Simulation Data Inspector

• “View Data in the Simulation Data Inspector” on page 12-2
• “Import Data from a CSV File into the Simulation Data Inspector” on page 12-11
• “Microsoft Excel Import, Export, and Logging Format” on page 12-16
• “Configure the Simulation Data Inspector” on page 12-24
• “How the Simulation Data Inspector Compares Data” on page 12-32
• “Save and Share Simulation Data Inspector Data and Views” on page 12-37
• “Inspect and Compare Data Programmatically” on page 12-43
• “Limit the Size of Logged Data” on page 12-48

12

View Data in the Simulation Data Inspector
You can use the Simulation Data Inspector to visualize the data you generate throughout the design
process. Simulation data that you log in a Simulink model logs to the Simulation Data inspector. You
can also import test data and other recorded data into the Simulation Data Inspector to inspect and
analyze it alongside the logged simulation data. The Simulation Data Inspector offers several types of
plots, which allow you to easily create complex visualizations of your data.

View Logged Data
Logged signals as well as outputs and states logged using the Dataset format automatically log to
the Simulation Data Inspector when you simulate a model. You can also record other kinds of
simulation data so the data appears in the Simulation Data Inspector at the end of the simulation. To
see states and output data logged using a format other than Dataset in the Simulation Data
Inspector, open the Configuration Parameters dialog box and, in the Data Import/Export pane,
select the Record logged workspace data in Simulation Data Inspector parameter.

Note When you log states and outputs using the Structure or Array format, you must also log
time for the data to record to the Simulation Data Inspector.

The Simulation Data Inspector displays available data in the table in the Inspect pane. To plot a
signal, select the check box next to the signal. You can modify the layout and add different
visualizations to analyze the simulation data. For more information, see “Create Plots Using the
Simulation Data Inspector”.

12 Simulation Data Inspector

12-2

The Simulation Data Inspector manages incoming simulation data using the archive. By default, the
previous run moves to the archive when you start a new simulation. You can plot signals from the
archive, or you can drag runs of interest back into the work area.

Import Data from the Workspace or a File
You can import data from the base workspace or from a file to view on its own or alongside simulation
data. The Simulation Data Inspector supports all built-in data types and many data formats for
importing data from the workspace. In general, whatever the format, sample values must be paired
with sample times. The Simulation Data Inspector allows up to 8000 channels per signal in a run
created from imported workspace data.

You can also import data from these types of files:

• MAT file
• CSV file — Format data as shown in “Import Data from a CSV File into the Simulation Data

Inspector”.
• Microsoft Excel® file — Format data as described in “Microsoft Excel Import, Export, and Logging

Format”.
• MDF file — MDF file import is supported for Linux® and Windows operating systems. The MDF file

must have a .mdf, .mf4, .mf3, .data, or .dat file extension and contain data with only integer
and floating data types.

 View Data in the Simulation Data Inspector

12-3

• ULG file — Flight log data import requires a UAV Toolbox license.

To import data from the workspace or from a file that is saved in a data or file format that the
Simulation Data Inspector does not support, you can write your own workspace data or file reader to
import the data using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for supported file types. For examples, see:

• “Import Data Using a Custom File Reader”
• “Import Workspace Variables Using a Custom Data Reader”

To import data, select the Import button in the Simulation Data Inspector.

In the Import dialog, you can choose to import data from the workspace or from a file. The table
below the options shows data available for import. If you do not see your workspace variable or file
contents in the table, that means the Simulation Data Inspector does not have a built-in or registered
reader that supports that data. You can select which data to import using the check boxes, and you
can choose whether to import that data into an existing run or a new run.

12 Simulation Data Inspector

12-4

When you import data into a new run, the run always appears in the work area. You can manually
move imported runs to the archive.

View Complex Data
To view complex data in the Simulation Data Inspector, import the data or log the signals to the
Simulation Data Inspector. You can control how to visualize the complex signal using the Properties
pane in the Simulation Data Inspector and in the Instrumentation Properties for the signal in the
model. To access the Instrumentation Properties for a signal, right-click the logging badge for the
signal and select Properties.

You can specify the Complex Format as Magnitude, Magnitude-Phase, Phase, or Real-Imaginary. If
you select Magnitude-Phase or Real-Imaginary for the Complex Format, the Simulation Data
Inspector plots both components of the signal when you select the check box for the signal. For
signals in Real-Imaginary format, the Line Color specifies the color of the real component of the
signal, and the imaginary component is a different shade of the Line Color. For example, the
Rectangular QAM Modular Baseband signal on the lower graph displays the real component of

 View Data in the Simulation Data Inspector

12-5

the signal in light blue, matching the Line Color parameter, and the imaginary component is shown
in a darker shade of blue.

For signals in Magnitude-Phase format, the Line Color specifies the color of the magnitude
component, and the phase is displayed in a different shade of the Line Color.

View String Data
You can log and view string data with your signal data in the Simulation Data Inspector. For example,
consider this simple model. The value of the sine wave block controls whether the switch sends a
string reading Positive or Negative to the output.

12 Simulation Data Inspector

12-6

The plot shows the results of simulating the model. The string signal is shown at the bottom of the
graphical viewing area. The value of the signal is displayed inside a band, and transitions in the string
signal's value are marked with criss-crossed lines.

You can use cursors to inspect how the string signal values correspond with the sine signal's values.

 View Data in the Simulation Data Inspector

12-7

When you plot multiple string signals on a plot, the signals stack in the order they were simulated or
imported, with the most recent signal positioned at the top. For example, you might consider the
effect of changing the phase of the sine wave controlling the switch.

12 Simulation Data Inspector

12-8

View Frame-Based Data
Processing data in frames rather than point by point provides a performance boost needed in some
applications. To view frame-based data in the Simulation Data Inspector, you have to specify that the
signal is frame-based in the Instrumentation Properties for the signal. To access the
Instrumentation Properties dialog for a signal, right-click the signal's logging badge and select
Properties. To specify a signal as frame-based, select Columns as channels (frame based) for
Input processing.

View Event-Based Data
You can log or import event data to the Simulation Data Inspector. To view the logged event-based
data, select the check box next to Send: 1. The Simulation Data Inspector displays the data as a
stem plot, with each stem representing the number of events that occurred for a given sample time.

 View Data in the Simulation Data Inspector

12-9

See Also

More About
• Inspect Simulation Data
• Compare Simulation Data
• Share Simulation Data Inspector Data and Views on page 12-37
• Decide How to Visualize Data
• Dataset Conversion for Logged Data

12 Simulation Data Inspector

12-10

Import Data from a CSV File into the Simulation Data Inspector
To import data into the Simulation Data Inspector from a CSV file, format the data in the CSV file.
Then, you can import the data using the Simulation Data Inspector UI or the
Simulink.sdi.createRun function.

Tip When you want to import data from a CSV file where the data is formatted differently from the
specification in this topic, you can write your own file reader for the Simulation Data Inspector using
the io.reader class.

Basic File Format
In the simplest format, the first row in the CSV file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values render as missing data. All built-in data types are
supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.

 Import Data from a CSV File into the Simulation Data Inspector

12-11

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
You can specify signal metadata in the CSV file to indicate the signal data type, units, interpolation
method, block path, and port index. List metadata for each signal in rows between the signal name
and the signal data. Label metadata according to this table.

Signal Property Label Value
Data type Type: Built-in data type.
Units Unit: Supported unit. For example,

Unit: m/s specifies units of
meters per second.

For a list of supported units,
enter showunitslist in the
MATLAB Command Window.

Interpolation method Interp: linear, zoh for zero order
hold, or none.

Block Path BlockPath: Path to the block that generated
the signal.

Port Index PortIndex: Integer.

You can also import a signal with a data type defined by an enumeration class. Instead of using the
Type: label, use the Enum: label and specify the value as the name of the enumeration class. The
definition for the enumeration class must be saved on the MATLAB path.

When an imported file does not specify signal metadata, the Simulation Data Inspector assumes
double data type and linear interpolation. You can specify the interpolation method as linear, zoh
(zero-order hold), or none. If you do not specify units for the signals in your file, you can assign units
to the signals in the Simulation Data Inspector after you import the file.

You can specify any combination of metadata for each signal. Leave a blank cell for signals with less
specified metadata.

12 Simulation Data Inspector

12-12

Import Data from a CSV File
You can import data from a CSV file using the Simulation Data Inspector UI or using the
Simulink.sdi.createRun function.

To import data using the UI, open the Simulation Data Inspector using the Simulink.sdi.view
function or the Data Inspector button in the Simulink™ toolstrip. Then, click the Import button.

In the Import dialog, select the option to import data from a file and navigate in the file system to
select the file. After you select the file, data available for import shows in the table. You can choose
which signals to import and whether to import them to a new or existing run. This example imports
all available signals to a new run. After selecting the options, click the Import button.

 Import Data from a CSV File into the Simulation Data Inspector

12-13

When you import data into a new run using the UI, the new run name includes the run number
followed by Imported_Data.

When you import data programmatically, you can specify the name of the imported run.

csvRunID = Simulink.sdi.createRun('CSV File Run','file','csvExampleData.csv');

See Also
Functions
Simulink.sdi.createRun

More About
• “View Data in the Simulation Data Inspector”

12 Simulation Data Inspector

12-14

• “Microsoft Excel Import, Export, and Logging Format”
• “Import Data Using a Custom File Reader”

 Import Data from a CSV File into the Simulation Data Inspector

12-15

Microsoft Excel Import, Export, and Logging Format
Using the Simulation Data Inspector or Simulink Test, you can import data from a Microsoft Excel file
or export data to a Microsoft Excel file. You can also log data to an Excel file using the Record block.
The Simulation Data Inspector, Simulink Test, and the Record block all use the same file format, so
you can use the same Microsoft Excel file with multiple applications.

Tip When the format of the data in your Excel file does not match the specification in this topic, you
can write your own file reader to import the data using the io.reader class.

Basic File Format
In the simplest format, the first row in the Excel file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values imported from the Excel file render as missing data
in the Simulation Data Inspector. All built-in data types are supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.

12 Simulation Data Inspector

12-16

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
The file can include metadata for signals such as data type, units, and interpolation method. The
metadata is used to determine how to plot the data, how to apply unit and data conversions, and how
to compute comparison results. For more information about how metadata is used in comparisons,
see “How the Simulation Data Inspector Compares Data”.

Metadata for each signal is listed in rows between the signal names and the signal data. You can
specify any combination of metadata for each signal. Leave a blank cell for signals with less specified
metadata.

Label each piece of metadata according to this table. The table also indicates which tools and
operations support each piece of metadata. When an imported file does not specify signal metadata,
double data type, linear interpolation, and union synchronization are used.

 Microsoft Excel Import, Export, and Logging Format

12-17

Property Descriptions

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Data type Type: Built-in data
type.

Supported Supported Supported

Units Unit: Supported unit.
For example,
Unit: m/s
specifies units
of meters per
second.

For a list of
supported units,
enter
showunitslis
t in the
MATLAB
Command
Window.

Supported Supported Supported

Interpolation
method

Interp: linear, zoh
for zero order
hold, or none.

Supported Supported Supported

Synchronization
method

Sync: union or
intersection
.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Relative
tolerance

RelTol: Percentage,
represented as
a decimal. For
example,
RelTol: 0.1
specifies a 10%
relative
tolerance.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Absolute
tolerance

AbsTol: Numeric value. Supported Not Supported

Metadata not
included in
exported file.

Supported

Time tolerance TimeTol: Numeric value,
in seconds.

Supported Not Supported

Metadata not
included in
exported file.

Supported

12 Simulation Data Inspector

12-18

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Leading
tolerance

LeadingTol: Numeric value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Lagging
tolerance

LaggingTol: Numeric Value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Block Path BlockPath: Path to the
block that
generated the
signal.

Supported Supported Supported

Port Index PortIndex: Integer. Supported Supported Supported
Name Name: Signal name Supported Not Supported

Metadata not
included in
exported file.

Supported

User-Defined Data Types
In addition to built-in data types, you can use other labels in place of the DataType: label to specify
fixed-point, enumerated, alias, and bus data types.

 Microsoft Excel Import, Export, and Logging Format

12-19

Property Descriptions

Data Type Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Enumeration Enum: Name of the
enumeration
class.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Alias Alias: Name of a
Simulink.Ali
asType object
in the MATLAB
workspace.

Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Not Supported Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Fixed-point Fixdt: • fixdt
constructor.

• Name of a
Simulink.
NumericTy
pe object in
the MATLAB
workspace.

• Name of a
fixed-point
data type as
described in
“Fixed-Point
Numbers in
Simulink”
(Fixed-Point
Designer).

Supported Not Supported Supported

Bus Bus: Name of a
Simulink.Bus
object in the
MATLAB
workspace.

Supported Not Supported Supported

When you specify the type using the name of a Simulink.Bus object and the object is not in the
MATLAB workspace, the data still imports from the file. However, individual signals in the bus use
data types described in the file rather than data types defined in the Simulink.Bus object.

12 Simulation Data Inspector

12-20

Complex, Multidimensional, and Bus Signals
You can import and export complex, multidimensional, and bus signals using an Excel file. The signal
name for a column of data indicates whether that data is part of a complex, multidimensional, or bus
signal. Excel file import and export do not support array of bus signals.

Multidimensional signal names include index information in parentheses. For example, the signal
name for a column might be signal1(2,3). When you import data from a file that includes
multidimensional signal data, elements in the data not included in the file take zero sample values
with the same data type and complexity as the other elements.

Complex signal data is always in real-imaginary format. Signal names for columns containing complex
signal data include (real) and (imag) to indicate which data each column contains. When you
import data from a file that includes imaginary signal data without specifying values for the real
component of that signal, the signal values for the real component default to zero.

Multidimensional signals can contain complex data. The signal name includes the indication for the
index within the multidimensional signal and the real or imaginary tag. For example, signal1(1,3)
(real).

Dots in signal names specify the hierarchy for bus signals. For example:

• bus.y.a
• bus.y.b
• bus.x

Tip When the name of your signal includes characters that could make it appear as though it were
part of a matrix, complex signal, or bus, use the Name metadata option to specify the name you want
the imported signal to use in the Simulation Data Inspector and Simulink Test.

Function-Call Signals
Signal data specified in columns before the first time column is imported as one or more function-call
signals. The data in the column specifies the times at which the function-call signal was enabled. The
imported signals have a value of 1 for the times specified in the column. The time values for function-
call signals must be double, scalar, and real, and must increase monotonically.

 Microsoft Excel Import, Export, and Logging Format

12-21

When you export data from the Simulation Data Inspector, function-call signals are formatted the
same as other signals, with a time column and a column for signal values.

Simulation Parameters
You can import data for parameter values used in simulation. In the Simulation Data Inspector, the
parameter values are shown as signals. Simulink Test uses imported parameter values to specify
values for those parameters in the tests it runs based on imported data.

Parameter data is specified using two or three columns. The first column specifies the parameter
names, with the cell in the header row for that column labeled Parameter:. The second column
specifies the value used for each parameter, with the cell in the header row labeled Value:.
Parameter data may also include a third column that contains the block path associated with each
parameter, with the cell in the header row labeled BlockPath:. Specify names, values, and block
paths for parameters starting in the first row that contains signal data, below rows used to specify
signal metadata. For example, this file specifies values for two parameters, X and Y.

Multiple Runs
You can include data for multiple runs in a single file. Within a sheet, you can divide data into runs by
labeling data with a simulation number and a source type, such as Input or Output. Specify the
simulation number and source type as additional signal metadata, using the label Simulation: for
the simulation number and the label Source: for the source type. The Simulation Data Inspector
uses the simulation number and source type only to determine which signals belong in each run.
Simulink Test uses the information to define inputs, parameters, and acceptance criteria for tests to
run based on imported data.

You do not need to specify the simulation number and output type for every signal. Signals to the
right of a signal with a simulation number and source use the same simulation number and source
until the next signal with a different source or simulation number. For example, this file defines data
for two simulations and imports into four runs in the Simulation Data Inspector:

• Run 1 contains signal1 and signal2.
• Run 2 contains signal3, X, and Y.
• Run 3 contains signal4.

12 Simulation Data Inspector

12-22

• Run 4 contains signal5.

You can also use sheets within the Microsoft Excel file to divide the data into runs and tests. When
you do not specify simulation number and source information, the data on each sheet is imported into
a separate run in the Simulation Data Inspector. When you export multiple runs from the Simulation
Data Inspector, the data for each run is saved on a separate sheet. When you import a Microsoft Excel
file that contains data on multiple sheets into Simulink Test, you are prompted to specify how to
import the data.

See Also
Simulink.sdi.createRun | Simulink.sdi.exportRun

More About
• “View Data in the Simulation Data Inspector”
• “Import Data from a CSV File into the Simulation Data Inspector”
• “Import Data Using a Custom File Reader”

 Microsoft Excel Import, Export, and Logging Format

12-23

Configure the Simulation Data Inspector
The Simulation Data Inspector supports a wide range of use cases for analyzing and visualizing data.
You can modify preferences in the Simulation Data Inspector to match your visualization and analysis
requirements. The preferences that you specify persist between MATLAB sessions.

By specifying preferences in the Simulation Data Inspector, you can configure options such as:

• How signals and metadata are displayed.
• Which data automatically imports from parallel simulations.
• Where prior run data is retained and how much prior data to store.
• How much memory is used during save operations.
• The system of units used to display signals.

To open the Simulation Data Inspector preferences, click Preferences.

Note You can restore all preferences in the Simulation Data Inspector to default values by clicking
Restore Defaults in the Preferences menu or by using the Simulink.sdi.clearPreferences
function.

Logged Data Size and Location
By default, simulation data logs to disk with data loaded into memory on demand, and the maximum
size of logged data is constrained only by available disk space. You can use the Disk Management
settings in the Simulation Data Inspector to directly control the size and location of logged data.

The Record mode setting specifies whether logged data is retained after simulation. When you
change the Record mode setting to View during simulation only, no logged data is available in the
Simulation Data Inspector or the workspace after the simulation completes. Only use this mode when
you do not want to save logged data. The Record mode setting reverts to View and record data
each time you start MATLAB. Changing the Record mode setting can affect other applications, such
as visualization tools. For details, see “View Data Only During Simulation”.

To directly limit the size of logged data, you can specify a minimum amount of free disk space or a
maximum size for the logged data. By default, logged data must leave at least 100 MB of free disk
space with no maximum size limit. Specify the required disk space and maximum size in GB, and
specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
retaining data for the current run by deleting data for prior runs. To prioritize retaining prior data,
change the When low on disk space setting to Keep prior runs and stop recording. You see a
warning message when prior runs are deleted and when recording is disabled. If recording is
disabled due to the size of logged data, you need to change the Record Mode back to View and
record data to continue logging data, after you have freed up disk space. For more information, see
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data”.

12 Simulation Data Inspector

12-24

The Storage Mode setting specifies whether to log data to disk or to memory. By default, data logs to
disk. When you configure a parallel worker to log data to memory, data transfer back to the host is
not supported. Logging data to memory is not supported for rapid accelerator simulations or models
deployed using Simulink Compiler™.

You can also specify the location of the temporary file that stores logged data. By default, data logs to
the temporary files directory on your computer. You may change the file location when you need to
log large amounts of data and a secondary drive provides more storage capacity. Logging data to a
network location can degrade performance.

Programmatic Use

You can programmatically configure and check each preference value.

Preference Functions
Record mode Simulink.sdi.setRecordData

Simulink.sdi.getRecordData
Required Free Space Simulink.sdi.setRequiredFreeSpace

Simulink.sdi.getRequiredFreeSpace
Max Disk Usage Simulink.sdi.setMaxDiskUsage

Simulink.sdi.getMaxDiskUsage
When low on disk space Simulink.sdi.setDeleteRunsOnLowSpace

Simulink.sdi.getDeleteRunsOnLowSpace
Storage Mode Simulink.sdi.setStorageMode

Simulink.sdi.getStorageMode
Storage Location Simulink.sdi.setStorageLocation

Simulink.sdi.getStorageLocation

Archive Behavior and Run Limit
When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage runs in the user interface and control the number of runs the Simulation
Data Inspector retains.

You can configure a limit for the number of runs to retain in the archive and whether the Simulation
Data Inspector automatically moves prior runs into the archive.

Manage Runs Using the Archive

By default, the Simulation Data Inspector automatically archives simulation runs. When you simulate
a model, the prior simulation run moves to the archive, and the Simulation Data Inspector updates
the view to show data for aligned signals in the current run.

The archive does not impose functional limitations on the runs and signals it contains. You can plot
signals from the archive, and you can use runs and signals in the archive in comparisons. You can

 Configure the Simulation Data Inspector

12-25

drag runs of interest from the archive to the work area and vice versa whether Automatically
Archive is selected or disabled.

To prevent the Simulation Data Inspector from automatically moving prior simulations runs to the
archive, clear the Automatically archive setting. With automatic archiving disabled, the Simulation
Data Inspector does not move prior runs into the Archive pane or automatically update plots to
display data from the current simulation.

Tip To manually delete the contents of the archive, click Delete archived runs .

Control Number of Runs Retained in Simulation Data Inspector

You can specify a limit for the number of runs to retain in the archive. When the number of runs in
the archive reaches the limit, the Simulation Data Inspector deletes runs in the archive on a first-in,
first-out basis.

The run limit applies only to runs in the archive. For the Simulation Data Inspector to automatically
limit the data it retains by deleting old runs, select Automatically archive and specify a size limit.

By default, the Simulation Data Inspector retains the last 20 runs moved to the archive. To remove
the limit, select No limit. To specify the maximum number of runs to store in the archive, select Last
n runs and enter the limit. A warning occurs if you specify a limit that would delete runs already in
the archive.

Programmatic Use

To configure the Automatically archive option, use the Simulink.sdi.setAutoArchiveMode
function.

To specify the archive run limit, use the Simulink.sdi.setArchiveRunLimit function.

Incoming Run Names and Location
You can configure how the Simulation Data Inspector handles incoming runs from import or
simulation. You can choose whether new runs are added at the top of the work area or the bottom and
specify a naming rule to use for runs created from simulation.

By default, the Simulation Data Inspector adds new runs below prior runs in the work area. The
Archive settings also affect the location of runs. By default, prior runs are moved to the archive when
a new simulation run is created.

The run naming rule is used to name runs created from simulation. You can create the run naming
rule using a mix of literal text that is used in the run name as-is and one or more tokens that
represent metadata about the run. By default, the Simulation Data Inspector names runs using the
run index and model name: Run <run_index>: <model_name>.

Tip To rename an existing run, double-click the name in the work area and enter the new name, or
modify the run name in the Properties pane.

12 Simulation Data Inspector

12-26

Programmatic Use

You can programmatically check and modify the naming rule using the
Simulink.sdi.getRunNamingRule and Simulink.sdi.setRunNamingRule functions. Restore
the naming rule to its default programmatically using the Simulink.sdi.resetRunNamingRule
function.

Signal Metadata to Display
You can control which signal metadata is displayed in the work area of the Inspect pane and in the
results section on the Compare pane in the Simulation Data Inspector. You specify the metadata to
display separately for each pane using the Table Columns preferences in the Inspect and Compare
sections of the Preferences dialog, respectively.

Inspect Pane

By default, the signal name and the line style and color used to plot the signal are displayed on the
Inspect pane. To display different or additional metadata in the work area on the Inspect pane,
select the check box next to each piece of metadata you want to display in the Table Columns
preference in the Inspect section. You can always view complete metadata for the selected signal in
the Inspect pane using the Properties pane.

Note Metadata displayed in the work area on Inspect pane is included when you generate a report
of plotted signals. You can also specify metadata to include in the report regardless of what is
displayed in the work area when you create the report programmatically using the
Simulink.sdi.report function.

Compare Pane

By default, the Compare pane shows the signal name, the absolute and relative tolerances used in
the signal comparison, and the maximum difference from the comparison result. To display different
or additional metadata in the results on the Compare pane, select the check box next to each piece
of metadata you want to display in the Table Columns preference in the Compare section. You can
always view complete metadata for the signals compared for a selected signal result using the
Properties pane, where metadata that differs between the compared signals is highlighted. Signal
metadata displayed on the Compare pane does not affect the contents of comparison reports.

Signal Selection on the Inspect Pane
You can configure how you select signals to plot on the selected subplot in the Simulation Data
Inspector. By default, you use check boxes next to each signal to plot. You can also choose to plot
signals based on selection in the work area. Use Check Mode when creating views and visualizations
that represent findings and analysis of a data set. Use Browse Mode to quickly view and analyze
data sets with a large number of signals.

For more information about creating visualizations using Check Mode, see “Create Plots Using the
Simulation Data Inspector”.

For more information about using Browse Mode, see “Visualize Many Logged Signals”.

Note To use Browse Mode, your layout must include only Time Plot visualizations.

 Configure the Simulation Data Inspector

12-27

How Signals Are Aligned for Comparison
When you compare runs using the Simulation Data Inspector, the comparison algorithm pairs signals
for signal comparison through a process called alignment. You can align signals between the
compared runs using one or more of the signal properties shown in the table.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers”

Signal Name Name of the signal

You can specify the priority for each piece of metadata used for alignment. The Align By field
specifies the highest priority property used to align signals. The priority drops with each subsequent
Then By field. You must specify a primary alignment property in the Align By field, but you can
leave any number of Then By fields blank.

By default, the Simulation Data Inspector aligns signals between runs according to this flow chart.

For more information about configuring comparisons in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data”.

Colors Used to Display Comparison Results
You can configure the colors used to display comparison results using the Simulation Data Inspector
preferences. You can specify whether to use the signal color from the Inspect pane or a fixed color
for the baseline and compared signals. You can also choose colors for the tolerance and the difference
signal.

By default, the Simulation Data Inspector displays comparison results using fixed colors for the
baseline and compared signals. Using a fixed color allows you to avoid the baseline signal color and
compared signal color being either the same or too similar to distinguish.

12 Simulation Data Inspector

12-28

Signal Grouping
You can specify how to group signals within a run in the Simulation Data Inspector. The preferences
apply to both the Inspect and Compare panes and comparison reports. You can group signals by:

• Domain — Signal type. For example, signals created by signal logging have a domain of Signal,
while signals created from logging model outputs have a domain of Outports.

• Physical System Hierarchy — Signal Simscape™ physical system hierarchy. The option to group by
physical system hierarchy is available when you have a Simscape license.

• Data Hierarchy — Signal location within structured data. For example, data hierarchy grouping
reflects the hierarchy of a bus.

• Model Hierarchy — Signal location within model hierarchy. Grouping by model hierarchy can be
helpful when you log data from a model that includes model or subsystem references.

Grouping signals adds rows for the hierarchical nodes, which you can expand to show the signals
within that node. By default, the Simulation Data Inspector groups signals by domain, then by
physical system hierarchy (if you have a Simscape license), and then by data hierarchy.

To remove grouping and display a flat list of signals in each run, select None for all grouping options.

Programmatic Use

To specify how to group signals programmatically, use the Simulink.sdi.setTableGrouping
function.

Data to Stream from Parallel Simulations
When you run parallel simulations using the parsim function, you can stream logged simulation data
to the Simulation Data Inspector. A dot next to the run name in the Inspect pane indicates the status
of the simulation that corresponds to the run, so you can monitor simulation progress while
visualizing the streamed data. You can control whether data streams from a parallel simulation based
on the type of worker the data comes from.

By default, the Simulation Data Inspector is configured for manual import of data from parallel
workers. You can use the Simulation Data Inspector programmatic interface to inspect the data on
the worker and decide whether to send it to the client Simulation Data Inspector for further analysis.
To manually move data from a parallel worker to the Simulation Data Inspector, use the
Simulink.sdi.sendWorkerRunToClient function.

You may want to automatically stream data from parallel simulations that run on local workers or on
local and remote workers. Streaming data from both local and remote workers may affect simulation
performance, depending on how many simulations you run and how much data you log. When you
choose to stream data from local workers or all parallel workers, all logged simulation data
automatically shows in the Simulation Data Inspector.

Programmatic Use

You can configure Simulation Data Inspector support for parallel worker data programmatically using
the Simulink.sdi.enablePCTSupport function.

 Configure the Simulation Data Inspector

12-29

Options for Saving and Loading Session Files
You can specify a maximum amount of memory to use while loading or saving a session file. By
default, the Simulation Data Inspector uses a maximum of 100 MB of memory when you load or save
a session file. You can specify a memory use limit as low as 50 MB.

To reduce the size of the saved session file, you can specify a compression option.

• None — Do not compress saved data.
• Normal — Compress the saved file as much as possible.
• Fastest — Compress the saved file less than Normal compression for faster save time.

Signal Display Units
Signals in the Simulation Data Inspector have two units properties: stored units and display units.
The stored units represent the units of the data saved to disk. The display units specify how the
Simulation Data Inspector displays the data. You can configure the Simulation Data Inspector to use a
system of units to define the display units for all signals. You can choose either the SI or US
Customary system of units, or you can display data using its stored units.

When you use a system of units to define display units for signals in the Simulation Data Inspector,
the display units update for any signal with display units that are not valid for that unit system. For
example, if you select SI units, the display units for a signal may update from ft to m.

Note The system of units you choose to use in the Simulation Data Inspector does not affect the
stored units for any signal. You can convert the stored units for a signal using the convertUnits
function. Conversion may result in loss of precision.

In addition to selecting a system of units, you can specify override units so that all signals of a given
measurement type are displayed using consistent units. For example, if you want to visualize all
signals that represent weight using units of kg, specify kg as an override unit.

Tip For a list of units supported by Simulink, enter showunitslist in the MATLAB Command
Window.

You can also modify the display units for a specific signal using the Properties pane. For more
information, see “Modify Signal Properties in the Simulation Data Inspector”.

Programmatic Use

Configure the unit system and override units using the Simulink.sdi.setUnitSystem function.
You can check the current units preferences using the Simulink.sdi.getUnitSystem function.

See Also
Functions
Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setTableGrouping | Simulink.sdi.enablePCTSupport |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode

12 Simulation Data Inspector

12-30

More About
• “Iterate Model Design Using the Simulation Data Inspector”
• “How the Simulation Data Inspector Compares Data”
• “Compare Simulation Data”
• “Create Plots Using the Simulation Data Inspector”
• “Modify Signal Properties in the Simulation Data Inspector”

 Configure the Simulation Data Inspector

12-31

How the Simulation Data Inspector Compares Data
You can tailor the Simulation Data Inspector comparison process to fit your requirements in multiple
ways. When comparing runs, the Simulation Data Inspector:

1 Aligns signal pairs in the Baseline and Compare To runs based on the Alignment settings.

The Simulation Data Inspector does not compare signals that it cannot align.
2 Synchronizes aligned signal pairs according to the specified Sync Method.

Values for time points added in synchronization are interpolated according to the specified
Interpolation Method.

3 Computes the difference of the signal pairs.
4 Compares the difference result against specified tolerances.

When the comparison run completes, the results of the comparison are displayed in the navigation
pane.

Status Comparison Result
Difference falls within the specified tolerance.

Difference violates specified tolerance.

The signal does not align with a signal from the
Compare To run.

When you compare signals with differing time intervals, the Simulation Data Inspector compares the
signals on their overlapping interval.

Signal Alignment
In the alignment step, the Simulation Data Inspector decides which signal from the Compare To run
pairs with a given signal in the Baseline run. When you compare signals with the Simulation Data
Inspector, you complete the alignment step by selecting the Baseline and Compare To signals.

The Simulation Data Inspector aligns signals using a combination of their Data Source, Path, SID, and
Signal Name properties.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers”

Signal Name Name of the signal in the model

With the default alignment settings, the Simulation Data Inspector aligns signals between runs
according to this flow chart.

12 Simulation Data Inspector

12-32

You can specify the priority for each of the signal properties used for alignment in the Simulation
Data Inspector Preferences. The Align By field specifies the highest priority property used to align
signals. The priority drops with each subsequent Then By field. You must specify a primary
alignment property in the Align By field, but you can leave any number of the Then By fields blank.

Synchronization
Often, signals that you want to compare don't contain the exact same set of time points. The
synchronization step in Simulation Data Inspector comparisons resolves discrepancies in signals' time
vectors. You can choose union or intersection as the synchronization method.

When you specify union synchronization, the Simulation Data Inspector builds a time vector that
includes every sample time between the two signals. For each sample time not originally present in
either signal, the Simulation Data Inspector interpolates the value. The second graph in the
illustration shows the union synchronization process, where the Simulation Data Inspector identifies
samples to add in each signal, represented by the unfilled circles. The final plot shows the signals
after the Simulation Data Inspector has interpolated values for the added time points. The Simulation
Data Inspector computes the difference using the signals in the final graph, so that the computed
difference signal contains all the data points between the signals.

When you specify intersection synchronization, the Simulation Data Inspector uses only the
sample times present in both signals in the comparison. In the second graph, the Simulation Data
Inspector identifies samples that do not have a corresponding sample for comparison, shown as
unfilled circles. The final graph shows the signals used for the comparison, without the samples
identified in the second graph.

 How the Simulation Data Inspector Compares Data

12-33

The choice between the synchronization options involves a trade off between speed and accuracy. The
interpolation required by union synchronization takes time, but provides a more precise result.
When you use intersection synchronization, the comparison finishes quickly because the
Simulation Data Inspector computes the difference for fewer data points and does not interpolate.
However, some data is discarded and precision lost with intersection synchronization.

Interpolation
The interpolation property of a signal determines how the Simulation Data Inspector displays the
signal and how additional data values are computed in synchronization. You can choose to interpolate
your data with a zero-order hold (zoh) or a linear approximation. You can also specify no
interpolation.

When you specify zoh or none for the Interpolation Method, the Simulation Data Inspector
replicates the data of the previous sample for interpolated sample times. When you specify linear
interpolation, the Simulation Data Inspector uses samples on either side of the interpolated point to
linearly approximate the interpolated value. Typically, discrete signals use zoh interpolation and
continuous signals use linear interpolation. You can specify the Interpolation Method for your
signals in the signal properties.

Tolerance Specification
The Simulation Data Inspector allows you to specify the scope and value of the tolerance for your
signal. You can define a tolerance band using any combination of absolute, relative, and time
tolerance values, and you can specify whether the specified tolerance applies to an individual signal
or to all the signals in a run.

12 Simulation Data Inspector

12-34

Tolerance Scope

In the Simulation Data Inspector, you can specify the tolerance for your data globally or for an
individual signal. Global tolerance values apply to all signals in a run that do not have Override
Global Tol set to yes. You can specify global tolerance values for your data at the top of the
graphical viewing area in the Compare view. To specify signal specific tolerance values, edit the
signal properties and ensure the Override Global Tol property is set to yes.

Tolerance Computation

In the Simulation Data Inspector, you can specify a tolerance band for your run or signal using a
combination of absolute, relative, and time tolerance values. When you specify the tolerance for your
run or signal using multiple types of tolerances, each tolerance can yield a different answer for the
tolerance at each point. The Simulation Data Inspector computes the overall tolerance band by
selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the
Simulation Data Inspector computes the tolerance for each point as a simple maximum.

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The upper boundary of the tolerance band is formed by adding tolerance to the Baseline signal.
Similarly, the Simulation Data Inspector computes the lower boundary of the tolerance band by
subtracting tolerance from the Baseline signal.

When you specify a time tolerance, the Simulation Data Inspector evaluates the time tolerance first,
over a time interval defined as [(tsamp-tol), (tsamp+tol)] for each sample. The Simulation Data
Inspector builds the lower tolerance band by selecting the minimum point on the interval for each
sample. Similarly, the maximum point on the interval defines the upper tolerance for each sample.

If you specify a tolerance band using an absolute or relative tolerance in addition to a time tolerance,
the Simulation Data Inspector applies the time tolerance first, and then applies the absolute and
relative tolerances to the maximum and minimum points selected with the time tolerance.

 How the Simulation Data Inspector Compares Data

12-35

upperTolerance = max + max(absoluteTolerance,relativeTolerance*max)

lowerTolerance = min - max(absoluteTolerance,relativeTolerance*min)

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also

Related Examples
• “Compare Simulation Data”

12 Simulation Data Inspector

12-36

Save and Share Simulation Data Inspector Data and Views
After you inspect, analyze, or compare your data in the Simulation Data Inspector, you can share your
results with others. The Simulation Data Inspector provides several options for sharing and saving
your data and results, depending on your needs. With the Simulation Data Inspector, you can:

• Save your data and layout modifications in a Simulation Data Inspector session.
• Share your layout modifications in a Simulation Data Inspector view.
• Share images and figures of plots you create in the Simulation Data Inspector.
• Create a Simulation Data Inspector report.
• Export data to the workspace.
• Export data to a file.

Save and Load Simulation Data Inspector Sessions
If you want to save or share data along with a configured view in the Simulation Data Inspector, save
your data and settings in a Simulation Data Inspector session. You can save sessions as MAT- or
MLDATX-files. The default format is MLDATX. When you save a Simulation Data Inspector session,
the session file contains:

• All runs, data, and properties from the Inspect pane, including which run is the current run and
which runs are in the archive.

• Plot display selection for signals in the Inspect pane.
• Subplot layout and line style and color selections.

Note Comparison results and global tolerances are not saved in Simulation Data Inspector sessions.

To save a Simulation Data Inspector session:

1 Hover over the save icon on the left side bar. Then, click Save As.

2 Name the file.
3 Browse to the location where you want to save the session, and click Save.

For large datasets, a status overlay in the bottom right of the graphical viewing area displays
information about the progress of the save operation and allows you to cancel the save operation.

The Save tab of the Simulation Data Inspector preferences menu on the left side bar allows you to
configure options related to save operations for MLDATX-files. You can set a limit as low as 50MB on
the amount of memory used for the save operation. You can also select one of three Compression
options:

• None, the default, applies no compression during the save operation.
• Normal creates the smallest file size.

 Save and Share Simulation Data Inspector Data and Views

12-37

• Fastest creates a smaller file size than you would get by selecting None, but provides a faster
save time than Normal.

To load a Simulation Data Inspector session, click the open icon on the left side bar. Then,
browse to select the MLDATX-file you want to open, and click Open.

Alternatively, you can double-click the MLDATX-file. MATLAB and the Simulation Data Inspector open
if they are not already open.

When the Simulation Data Inspector already contains runs and you open a session, all of the runs in
the session move to the archive. The view updates to reflect show plotted signals from the session
file. You can drag runs between the work area and archive as desired.

When the Simulation Data Inspector does not contain runs and you open a session, the Simulation
Data Inspector puts runs in the work area and archive as specified in the file.

Share Simulation Data Inspector Views
When you have different sets of data that you want to visualize the same way, you can save a view. A
view saves the layout and appearance characteristics of the Simulation Data Inspector without saving
the data. Specifically, a view saves:

• Plot layout, axis ranges, linking characteristics, and normalized axes.
• Location of signals in the plots, including plotted signals in the archive.
• Signal grouping and columns on display in the Inspect pane.
• Signal color and line styling.

To save a view:

1
Click the layout button .

2 Click Save current view.
3 In the dialog box, specify a name for the view and browse to the location where you want to save

the MLDATX-file.
4 Click Save.

To load a view:

1
Click the layout button .

2 Click Open saved view.
3 Browse to the view you would like to load, and click Open.

Share Simulation Data Inspector Plots
Use the snapshot feature to share the plots you generate in the Simulation Data Inspector. You can
export your plots to the clipboard to paste into a document, as an image file, or to a MATLAB figure.

12 Simulation Data Inspector

12-38

You can choose to capture the entire plot area, including all subplots in the plot area, or to capture
only the selected subplot.

Click the camera icon on the toolbar to access the snapshot menu. Use the radio buttons to
select the area you want to share and how you want to share the plot. After you make your selections,
click Snapshot to export the plot.

If you create an image, select where you would like to save the image in the file browser.

You can create snapshots of your plots in the Simulation Data Inspector programmatically using
Simulink.sdi.snapshot.

Create a Simulation Data Inspector Report
To generate documentation of your results quickly, create a Simulation Data Inspector report. You can
create a report of your data in either the Inspect or the Compare pane. The report is an HTML file
that includes information about all the signals and plots in the active pane. The report includes all
signal information displayed in the signal table in the navigation pane. For more information about
configuring the table, see “Inspect Metadata”.

To generate a Simulation Data Inspector Report:

1

Click the create report icon on the left side bar.
2 Under Include in report, specify the type of report you want to create.

 Save and Share Simulation Data Inspector Data and Views

12-39

• Select Inspect Signals to include the plots and signals from the Inspect pane.
• Select Compare Runs to include the data and plots from the Compare pane. When you

generate a Compare Runs report, you can choose to Report only mismatched signals or
to Report all signals. If you select Report only mismatched signals, the report shows only
signal comparisons that are not within the specified tolerances.

3 Specify a File name for the report, and navigate to the Folder where you want to save the
report.

4 Click Create Report.

The generated report automatically opens in your default browser.

Export Data to the Workspace or a File
You can use the Simulation Data Inspector to export data to the base workspace, a MAT file, or a
Microsoft Excel file. You can export a selection of runs and signals, runs in the work area, or all runs
in the Inspect pane, including the Archive.

When you export a selection of runs and signals, make the selection of data to export before clicking

the export button.

12 Simulation Data Inspector

12-40

Only the selected runs and signals are exported. In this example, only the x1 signals from Run 1 and
Run 2 are exported. The check box selections for plotting data do not affect whether a signal is
exported.

When you export a single signal to the workspace or a MAT file, the signal is exported to a
timeseries object. Data exported to the workspace or a MAT file for a run or multiple signals is
stored as a Simulink.SimulationData.Dataset object.

To export data to a file, select the File option in the Export dialog. You can specify a file name and
browse to the location where you want to save the exported file. When you export data to a MAT file,
a single exported signal is stored as a timeseries object, and runs or multiple signals are stored as
a Simulink.SimulationData.Dataset object. When you export data to a Microsoft Excel file, the
data is stored using the format described in “Microsoft Excel Import, Export, and Logging Format”.

To export to a Microsoft Excel file, select the XLSX extension from the drop-down. When you export
data to a Microsoft Excel file, you can specify additional options for the format of the data in the
exported file. If the file name you provided already exists, you can choose to overwrite the entire file
or to only overwrite sheets containing data that corresponds to the exported data. You can also
choose which metadata to include and whether signals with identical time data share a time column
in the exported file.

Export Video Signal to an MP4 File
You can export a 2D or 3D signal that contains RGB or monochrome video data to an MP4 file using
the Simulation Data Inspector. For example, when you log a video signal in a simulation, you can
export the data to an MP4 file and view the video using a video player. To export a video signal to an
MP4 file:

1 Select the signal you want to export.
2 Click Export in the toolbar on the left or right-click the signal and select Export.
3 In the Export dialog box, choose to export Selected runs and signals to a file.
4 Specify a file name and the path to the location where you want to save the file.
5 Select MP4 video file from the list and click Export.

For the option to export to an MP4 file to be available:

 Save and Share Simulation Data Inspector Data and Views

12-41

• You must export only one signal at a time.
• The selected signal must be 2D or 3D and contain RGB or monochrome video data.
• The selected signal must be represented in the Simulation Data Inspector as a single signal with

multidimensional sample values.

You may need to convert the signal representation before exporting the signal data. For more
information, see “Analyze Multidimensional Signal Data”.

• The data type for the signal values must be double, single, or uint8.

Exporting a video signal to an MP4 file is not supported for Linux operating systems.

See Also

Related Examples
• “View Data in the Simulation Data Inspector”
• “Inspect Simulation Data”
• “Compare Simulation Data”

12 Simulation Data Inspector

12-42

Inspect and Compare Data Programmatically
You can harness the capabilities of the Simulation Data Inspector from the MATLAB command line
using the Simulation Data Inspector API.

The Simulation Data Inspector organizes data in runs and signals, assigning a unique numeric
identification to each run and signal. Some Simulation Data Inspector API functions use the run and
signal IDs to reference data, rather than accepting the run or signal itself as an input. To access the
run IDs in the workspace, you can use Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex. You can access signal IDs through a Simulink.sdi.Run
object using the getSignalIDByIndex method.

The Simulink.sdi.Run and Simulink.sdi.Signal classes provide access to your data and allow
you to view and modify run and signal metadata. You can modify the Simulation Data Inspector
preferences using functions like Simulink.sdi.setSubPlotLayout,
Simulink.sdi.setRunNamingRule, and Simulink.sdi.setMarkersOn. To restore the
Simulation Data Inspector's default settings, use Simulink.sdi.clearPreferences.

Create a Run and View the Data
This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

 Inspect and Compare Data Programmatically

12-43

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Compare Two Signals in the Same Run
You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

12 Simulation Data Inspector

12-44

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Runs with Global Tolerance
You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run
IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the runs. Specify a global relative
tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

 Inspect and Compare Data Programmatically

12-45

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances
You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that

12 Simulation Data Inspector

12-46

correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

See Also
Simulation Data Inspector

Related Examples
• “Compare Simulation Data”
• “How the Simulation Data Inspector Compares Data”
• “Create Plots Using the Simulation Data Inspector”

 Inspect and Compare Data Programmatically

12-47

Limit the Size of Logged Data
In this section...
“Limit the Number of Runs Retained in the Simulation Data Inspector Archive” on page 12-48
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” on page 12-48
“View Data Only During Simulation” on page 12-49
“Reduce the Number of Data Points Logged from Simulation” on page 12-49

Logging simulation data can produce large amounts of data that fill up disk space. Such situations
include logging many signals, logging data for long simulations, and running many simulations
without deleting run data from the Simulation Data Inspector. You can choose among several options
to limit the size of logged simulation data. You can:

• Limit the number of runs retained in the Simulation Data Inspector archive.
• Reduce the number of data points logged in each simulation.
• Specify a minimum disk space requirement or maximum size for logged data.
• Configure logging for only viewing data during simulation.

Depending on your requirements, you can use more than one strategy to limit the size of logged data.

Limit the Number of Runs Retained in the Simulation Data Inspector
Archive
When you run multiple simulations in a single MATLAB session, logged simulation data accumulates
in the Simulation Data Inspector even if you overwrite the logging data in the MATLAB workspace. To
reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs from the archive on a first-in, first-out basis.

Configure the archive Size setting in the Simulation Data Inspector preferences. The size limit only
applies to runs in the archive. For the Simulation Data Inspector to automatically limit data retention,
select Automatically archive and specify the maximum number of runs to retain in the archive. By
default, Automatically archive is enabled with an archive size limit of twenty runs. If you
experience issues with logged data consuming too much disk space, consider adjusting the size limit
for the archive in the Simulation Data Inspector preferences.

Specify a Minimum Disk Space Requirement or Maximum Size for
Logged Data
You can use preferences in the Simulation Data Inspector to directly limit the size of logged data by
specifying a minimum amount of disk space to leave free or by specifying a maximum size for logged
data on disk. Each setting accounts for all kinds of logged data. By default, logged data must leave at
least 100 MB of free disk space with no maximum size limit. Specify the required disk space and
maximum size in GB, and specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes

12 Simulation Data Inspector

12-48

retaining data for the current run. As the free disk space or logged data size approaches the limit,
prior runs are deleted first to free up space for data being logged in the current run. If deleting runs
does not free up enough space, recording is disabled. To prioritize retaining prior data, change the
When low on disk space setting to Keep prior runs and stop recording. You see a warning
message when prior runs are deleted and when recording is disabled. If recording is disabled due to
the size of logged data, you need to change the Record Mode back to View and record data to
continue logging data, after you have freed up disk space.

View Data Only During Simulation
In some situations, you may want to only view the data for logged signals and not save the values. For
example, when using the Simulation Data Inspector to visualize data streaming from hardware, you
may only want to view the data live and not record it. You can change the Record mode in the
Simulation Data Inspector preferences to View during simulation only so that logged data is not
saved and you can still view the data during simulation. The Record mode is reset to View and
record data at the start of each MATLAB session.

When you change the Record mode to View during simulation only:

• Logged data is not available in the Simulation Data Inspector or workspace after simulation.
• You can view data using dashboard blocks, scopes, and the Simulation Data Inspector, but plots

clear when you pan or zoom.
• You cannot access logged data during simulation using the Simulation Data Inspector

programmatic interface.

Reduce the Number of Data Points Logged from Simulation
Model configuration parameters and signal properties allow you to limit the number of data points
logged in a simulation. Be sure to carefully consider data requirements when limiting logged data
points. Limiting data can skip critical time points, and can lead to aliasing, if your effective sample
rate is too low.

You can reduce the number of data points using:

• Decimation — Log every nth signal value.
• Limit data points to last — Only log the last n signal values.
• Logging intervals — Specify specific time intervals in which to log data.

For details, see “Specify Signal Values to Log”.

See Also
Tools
Simulation Data Inspector

Related Examples
• “Specify Signal Values to Log”
• “Configure the Simulation Data Inspector”

 Limit the Size of Logged Data

12-49

Execution with MATLAB Scripts

51

Real-Time Application Objects and
Options in the MATLAB Interface

13

Target and Application Objects
The Simulink Real-Time software uses a Target object to represent a target computer and an
Application object to represent a real-time application. To run and control real-time applications
on the target computer, use the object functions.

An understanding of the Target and Application object properties and functions helps you to
control and test your real-time application on the target computer.

A Target object on the development computer represents the interface to a real-time application and
the RTOS on the target computer. To run and control the real-time application, use Target objects.

When you change a Target object property on the development computer, information is exchanged
between the target computer and the real-time application.

To create a Target object for the default target computer, in the MATLAB Command Window, type:

tg = slrealtime

A Target object has properties and functions specific to that object. The real-time application object
functions enables you to control a real-time application on the target computer from the development
computer. You enter real-time application object functions in the MATLAB Command Window on the
development computer or you can use MATLAB code scripts. To access the help for these functions
from the command line, use the syntax:

doc slrealtime/function_name

For example, to get help on the load function, type:

doc slrealtime/load

To get a list of all the functions for the Target object, use the methods function. For example, to get
the functions for Target object tg, type:

methods(tg)

If you want to control the real-time application from the target computer, use target computer
commands (see “Control Real-Time Application at Target Computer Command Line” on page 9-2).

Control Real-Time Application by Using Objects
You can create a real-time application and control it by using Target and Application objects

Open a model and build a real-time application. This example uses the slrt_ex_osc model.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc'));
slbuild('slrt_ex_osc');

Create Target and Application objects to represent the target computer and the real-time
application.

tg = slrealtime('TargetPC1');
app = slrealtime.Application('slrt_ex_osc');

Load the real-time application on the target computer by using the Target object.

13 Real-Time Application Objects and Options in the MATLAB Interface

13-2

load(tg,'slrt_ex_osc');

Set the Target object stoptime property for the real-time application.

setStopTime(tg,inf);

Get the Application object options property values from the real-time application.

app.Options.get("stoptime")

ans =

 Inf

Start the real-time application by using the Target object .

start(tg);

Stop the real-time application by using the Target object .

stop(tg);

Use Real-Time Application Object Functions
To run Target object and Application functions, use the function_name(target_object,
argument_list) syntax.

Unlike properties, for which partial but unambiguous names are permitted, you must enter function
names in full, in lowercase. For example, to start a real-time application on target computer tg, in the
MATLAB Command Window, type:

tg = slrealtime;
start(tg);

See Also
Target | Application

More About
• “Control Real-Time Application at Target Computer Command Line” on page 9-2

 Target and Application Objects

13-3

Simulink Real-Time Instruments and
Instrument Panel Apps

• “Add Instruments to Real-Time Application from Simulink Model” on page 14-2
• “Instrumentation Apps for Real-Time Applications” on page 14-5
• “Create App Designer Instrument Panels by Using App Generator” on page 14-6
• “Create App Designer Instrument Panels by Using Simulink Real-Time Components”

on page 14-9
• “Create Standalone Instrument Panel App by Using Application Compiler” on page 14-13

14

Add Instruments to Real-Time Application from Simulink Model
As an alternative to marking signals in your model for logging, connecting a signal to a File Log block
in the model, or selecting signals in a real-time application to stream in the Simulink Real-Time
explorer, you can stream signal data to the Simulation Data Inspector by using Instrument buttons in
the Simulink Editor. You can select a signal for streaming by using the Instrument buttons when the
signal is:

• Available in the model and in the real-time application that is built from the model.
• Uses specified (not inherited) sample time.
• Uses globally accessible memory in the real-time application.
• Not connected to a Send or Message Send block.

Unlike marking signals for streaming or connecting signals to File Log blocks, the Instrument buttons
use bind mode in workflows that let you add an instrument to the model and make the instrument
available in the real-time application without rebuilding the real-time application. You can export the
instrument from the model or import the instrument into the model.

To select signals for streaming to the Simulation Data Inspector by using the Instrument buttons in
the Simulink Editor:

1 Open the model.
2 Connect the development computer to the target computer.
3 To generate the real-time application, build the model.
4 To put the model in bind mode by using the Instrument buttons, in the Simulink Editor, select

Real-Time > Review Results > Add Instrument.

While in bind mode, a link symbol appears with the cursor, and an exit icon appears in the upper-
right corner of the model. When you are ready to exit bind mode, on the model canvas, click the

exit icon.
5 To add a signals to an instrument, select a block and select the check box next to the signal.

When you run the real-time application, the signals that you have added to an instrument are
streamed to the Simulation Data Inspector. After you have added an instrument to the model, the
label on the Add Instrument button changes to Configure Instrument.

6 To re-enter bind mode by using the Instrument buttons and add or remove signals from the
instrument, select Real-Time > Review Results > Configure Instrument.

7 To remove the instrument added by using Add Instrument, select Real-Time > Review Results
> Remove Instrument.

8 To highlight all signals in the model that are in the instrument, select Real-Time > Review
Results > Highlight Instrument.

9 To import or export an instrument in the model, select Real-Time > Review Results > Import
Instrument or select Real-Time > Review Results > Export Instrument.

10 After making changes to an instrument, to stream signals from the real-time application to the
Simulation Data Inspector, deploy the real-time application to the target computer and start the
application. For example, select Real-Time > Run on Target.

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-2

The Instrument buttons on the Real-Time tab of the Simulink Editor provide additional workflow
options.

Commands Instrument Button Operations
To enter bind mode to add an instrument or enter bind mode to add or
remove signals from an instrument, click the Add Instrument button or
Configure Instrument button on the Real-Time tab in the Simulink
Editor.

The Add Instrument button creates an Instrument object, similar to the
operation of the slrealtime.Instrument function. The Add
Instrument button puts the model in bind mode to create an Instrument
object. You can select any number of signals from the model to include in
the Instrument object.

After creating the Instrument, the Add Instrument button changes to the
Configure Instrument button. The Configure Instrument button puts
the model in bind mode and lets you add or remove signals from an
Instrument, similar to the operation of the addSignal function and
removeSignal function.
The Remove Instrument button removes the instrument created by Add
Instrument or Configure Instrument, similar to the way that the
removeInstrument function removes an instrument from the selected
target object.
Use the Highlight Instrument button to indicate signals that are
included in an instrument in the model.

Use the Import Instrument button to import an instrument (previously
saved to a MAT file) into the model.

Use the Export Instrument button to export an instrument (as a MAT file)
from the model.

An instrument that you add to a model is retained in the model, unless you remove the instrument
with the Remove Instrument button. To remove an instrument that was added in a previous editing
session, use the removeAllInstruments function.

To save and restore an instrument in a model, use the Export Instrument button and Import
Instrument button. A suggested workflow for saving and restoring an instrument in a model is:

1 Add an instrument to the model. Use the instrument to stream signals from the real-time
application.

2 Export an instrument from the model for streaming in future real-time application runs.
3 Remove an instrument from the model before exiting the Simulink Editor.
4 Import an instrument to the model when needed to stream signals from the real-time application.

See Also
Simulink Real-Time Explorer | Instrument

 Add Instruments to Real-Time Application from Simulink Model

14-3

Related Examples
• “Add App Designer App to Inverted Pendulum Model” on page 16-18
• “Control Color of Lamp on Instrument Panel” on page 16-104

More About
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-4

Instrumentation Apps for Real-Time Applications
To visualize the behavior of a real-time application running on a target computer, you can create
instrument panel apps. An instrument panel app is an user-interface application into which you can
insert one or more instruments. To create an instrument panel app, use App Designer or an m-script.

• When you create an instrument panel app in the App Designer Design View, you add instrument
components from the App Designer Component Library to the app. You configure each
instrument by using fields in the Component Browser. In the App Designer Code View, you add
callback code to handle component events, such as new streaming data or interaction with the
app. For more information, see “App Building Components” and “Manage Code in App Designer
Code View”.

• When you create an instrument panel app by using an m-script, you use a programmatic approach
to add each instrument to the panel as UI component. For more information, see “Write Callbacks
for Apps Created Programmatically”.

To stream signal and parameter data to the instrument panel app from the real-time application, you
use the Instrument object. After you create an instrument object for a real-time application, you can
use instrument object functions to connect signals and parameters from the real-time application to
instrument panel app callbacks.

When identifying parameters and output signals to stream signal to the instrument panel app from
the real-time application, it can be helpful to use the hierarchical display of signals and parameters.
See Simulink Real-Time Explorer. For more information, see “Display and Filter Hierarchical
Signals and Parameters” on page 7-65.

See Also
Simulink Real-Time Explorer | Instrument

Related Examples
• “Add App Designer App to Inverted Pendulum Model” on page 16-18
• “Create App Designer Instrument Panels by Using Simulink Real-Time Components” on page 14-

9
• “Create Standalone Instrument Panel App by Using Application Compiler” on page 14-13

More About
• “App Building Components”
• “Manage Code in App Designer Code View”
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65

 Instrumentation Apps for Real-Time Applications

14-5

Create App Designer Instrument Panels by Using App
Generator

You can create App Designer instrument panels to interface with real-time applications by using the
App Generator button on the Real-Time tab in the Simulink Editor. By using the App Generator,
you can generate an instrument panel for selected signals and parameters in your model. You can
open the generated app in App Designer to customize the instrument panel.

To create an instrument panel for your model by using the App Generator button:

1 Open the Simulink Real-Time model.
2 In the Simulink Editor, on the Real-Time tab, click Review Results > App Generator.
3 In the App Generator, select Signals and Parameters in the model to add as components on the

instrument panel. Click the Add to panel button.

4 After you add each signal or parameter, configure the Control Name and Control Type. The
figure shows some App Generator selections for the slrt_ex_osc model.

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-6

5 After configuring the Control Name and Control Type for the signals and parameters, click the
Generate App button.

6 To customize the generated application, click the Open in App Designer button.

The App Generator adds controls to your instrument panel that enable the panel to interface with the
real-time application. These controls include the target computer selector, connect button, load
application button, start/stop button, stop time field, and system log. Any instrumented signals from
the model are added in an axis component. For more information, see “Create App Designer
Instrument Panels by Using Simulink Real-Time Components” on page 14-9.

 Create App Designer Instrument Panels by Using App Generator

14-7

See Also
Simulink Real-Time App Generator | Instrument

Related Examples
• “Add App Designer App to Inverted Pendulum Model” on page 16-18

More About
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-8

Create App Designer Instrument Panels by Using Simulink
Real-Time Components

The Simulink® Real-Time™ components in App Designer ease creation of App Designer instrument
panels for real-time applications. By using the Simulink Real-Time components, you can add
frequently used operations, such as select target and load real-time application, as controls on your
instrument panel with minimal programming of callback functions.

This example shows how the Simulink Real-Time components in App Designer help you develop
instrument panels that are reusable. When you examine the callback code in the example, see that
only code that connects instruments from the real-time application to controls in the instrument panel
uses block path information that is specific to the real-time application. This approach makes it easier
to reuse instrument panels as the interface for other real-time applications.

For more information, see Develop Apps Using App Designer. You also can create instrument panel
applications without using App Designer. For more information, see “Add UI Components to App
Designer Programmatically”.

Create Blank App

To create an App Designer instrument panel by using Simulink Real-Time components:

Open the App Designer. In MATLAB®, select Home > New > App.

Or, in the MATLAB Command Window, type appdesigner. Then, select New > Blank App

Add Components to App

From the Simulink Real-Time group in the Component Library, add real-time application
components to the instrument panel. For this instrument panel, add:

• Target Selector
• Connect
• Load
• Start/Stop
• Stop Time
• Parameter Table
• Signal Table

From the Instrumentation group in the Component Library, add Instrumentation components to
the instrument panel. For this instrument panel, add Knob and Gauge.

From the Common group in the Component Library, add common components to the instrument
panel. For this instrument panel, add Axes.

Arrange Components in App

Arrange the instrument panel to appear as shown in this instrument panel.

 Create App Designer Instrument Panels by Using Simulink Real-Time Components

14-9

Configure Options for Components

Select the Knob instrument and change the Limits to 0,20 in the Inspector tab of the Component
Browser.

Select the Gauge instrument and change the Limits to -1.5,1.5 in the Inspector tab of the
Component Browser.

Save the instrument panel as myInstPanel_slrt_ex_osc.mlapp.

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-10

Add Callback Code

To add callback code to your App Designer instrument panel and test the instrument panel as a UI to
a real-time application:

Change to the Code View tab.

In the Component Browser, select node myInstPanel_slrt_ex_osc. Select Callbacks. From the
StartupFcn drop-down list, select <add StartupFcn callback>.

Add callback code to connect the instruments to the real-time application. Paste this callback code
into the startup function callback of the instrument panel application. This code connects the
instruments to the real-time application slrt_ex_osc.

% Define the real-time application file to load.
app.LoadButton.Application = 'slrt_ex_osc';

% Define parameters parameters to display in the
% Parameter Table component. The parameters are
% defined in a structure. The block path is the
% first element the parameter name.
app.ParameterTable.Parameters = struct(...
 'BlockPath', {'slrt_ex_osc/Signal Generator', ...
 'slrt_ex_osc/Signal Generator'}, ...
 'ParameterName', {'Amplitude', ...
 'Frequency'});

% Create a ParameterTuner object and bind
% to the knob component.
myParamFreq = slrealtime.ui.tool.ParameterTuner(app.UIFigure);
myParamFreq.Component = app.Knob;
myParamFreq.BlockPath = 'slrt_ex_osc/Signal Generator';
myParamFreq.ParameterName = 'Frequency';

% Define the signals to display in the Signal Table.
% The structure requires the block path of all parameters,
% and the port index of the port connected to the signal.
app.SignalTable.Signals = struct(...
 'BlockPath', {'slrt_ex_osc/Signal Generator', ...
 'slrt_ex_osc/Transfer Fcn'}, ...
 'PortIndex', {1,1});

% Create an Instrument object and connect the gauge
% component.
instMyGauge = slrealtime.Instrument();
instMyGauge.connectScalar(app.Gauge, 'slrt_ex_osc/Transfer Fcn', 1);

% Create another Instrument object and connect to the
% axes component.
%
% An Instrument object is needed for each component, but
% you can add more signals to the same axes by using connectLine.
instMyAxes = slrealtime.Instrument();
instMyAxes.connectLine(app.UIAxes, 'XfrFnc');

% Create an InstrumentManager and connect the previously created
% Instrument object.

 Create App Designer Instrument Panels by Using Simulink Real-Time Components

14-11

instMgr = slrealtime.ui.tool.InstrumentManager(app.UIFigure);
instMgr.Instruments = [instMyGauge, instMyAxes];

Save the instrument panel.

Open Model, Build Real-Time Application, Run Instrument Panel

In MATLAB, open the slrt_ex_osc model. In the Command Window, type:

open_system(fullfile(matlabroot,'toolbox',...
 'slrealtime','examples','slrt_ex_osc'))

Build the real-time application. In the Simulink Editor, select Real-Time > Run on Target.

After the model builds and the real-time application runs, in the App Designer, run the instrument
panel application.

From the instrument panel application, connect to the target computer, load the real-time application
slrt_ex_osc, set the stop time at 10 seconds, and start the real-time application.

The instrument panel controls indicate signal and parameter values for the real-time application.
Start the real-time application, use the knob to change the parameter value, and see the affect on the
output.

When done observing the operation of the instrument panel, close the app and close the App
Designer.

See Also
Simulink Real-Time Explorer | Instrument | ConnectButton | InstrumentManager |
LoadButton | Menu | ParameterTable | ParameterTuner | SignalTable |
SimulationTimeEditField | StartStopButton | StatusBar | StopTimeEditField |
SystemLog | TETMonitor | TargetSelector | UpdateButton | slrealtime.ui.control Properties

Related Examples
• “Add App Designer App to Inverted Pendulum Model” on page 16-18

More About
• “App Building Components”
• “Manage Code in App Designer Code View”
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-12

Create Standalone Instrument Panel App by Using Application
Compiler

After creating an instrument panel app to serve as an interface to your real-time application, you can
share a standalone executable instrument panel and installer with others, such as test engineers. For
more information about developing an App Designer instrument panel for your real-time application,
see Create App Designer Instrument Panels by Using Simulink Real-Time Components.

When you share a standalone executable instrument panel and real-time application, the people with
whom you share it with must be using a target computer with the same version of RTOS software and
configuration as you used to compile the instrument panel. This workflow uses the Application
Compiler tool to package the instrument panel app.

The standalone executable application is not cross platform, and the executable type depends on the
platform (for example, Windows®) on which it was generated.

Package App by Using Application Compiler

After developing a real-time application and an App Designer instrument panel app that provides and
interface to the real-time application, you can use the Application Compiler to package the app.

Open MATLAB and set the current folder to the folder in which you are creating the standalone
executable instrument panel.

Select Apps > Application Compiler. For more information, see Application Compiler.

Populate the Application Compiler dialog box with information for the application compiler project.
The image shows the example selections for project MyInstPanel_slrt_ex_osc.prj. The compiler
settings are:

• Main file: myInstPanel_slrt_ex_osc.mlapp
• Application Name: myInstPanel
• Author Name: J. Doe
• Email: jdoe@mycompany.com
• Company: MyCompany
• Summary: This standalone application provides an interface to a real-time application.
• Description: This standalone application provides an interface to a real-time application.
• Default installation folder: %ProgramFiles%\MyCompany\myAppTesting\
• Do not display the Windows Command Shell (console) for execution: Yes

Your choice of whether to select Runtime downloaded or Runtime included packaging options for
the project influences the length of time for packaging and for installing the application. If the
development computer that will be running the standalone executable instrument panel has internet
access, select downloaded. If not, select included.

For Suggested Support Packages, select the Simulink Real-Time Target Support Package.

For Files required for your application to run, select the real-time application MLDATX file.

 Create Standalone Instrument Panel App by Using Application Compiler

14-13

https://www-integ1.mathworks.com/help/releases/R2022a/slrealtime/ug/create-app-designer-instrument-panels-by-using-simulink-real-time-components.html
https://www-integ1.mathworks.com/help/releases/R2022a/compiler/applicationcompiler-app.html

Save the Application Compiler project as myInstPanel.prj.

In the Application Compiler dialog box, select Package. The Package status indicates completion of
the packaging stages. When completed, click Close.

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-14

The packaging process outputs folders for_redistribution,
for_redistribution_files_only, and for_testing.

Install Instrument Panel Application

To install the instrument panel application, run the executable file from the for_redistribution
folder.

On Windows

• If you selected Runtime downloaded from web for the project, run installer
MyAppInstaller_web.exe.

• If you selected Runtime included in package for the project, run installer MyAppInstaller_mcr.exe.

On Linux

• If you selected Runtime downloaded from web for the project, run installer
MyAppInstaller_web.install.

• If you selected Runtime included in package for the project, run installer
MyAppInstaller_mcr.install.

For this example, installer executable file is MyAppInstaller_mcr.exe. When run, this file installs
the MATLAB runtime and installs the instrument panel executable file:

C:\Program Files\MyCompany\MyInstPanel_slrt_ex_osc\application\MyInstPanel_slrt_ex_osc.exe

Tip: Make a note of the MATLAB run time path in this step. The path can be used to run the
standalone application on Linux system.

To test the standalone executable instrument panel, close MATLAB and run the
MyInstPanel_slrt_ex_osc EXE file.

On Windows

• run the MyInstPanel_slrt_ex_osc EXE file

On Linux

• run the command

./run_MyInstPanel_slrt_ex_osc.sh /usr/local/MATLAB/MATLAB_Runtime/v911

Use the instrument panel to connect to the target computer by inserting the target computer IP
address (for example, 192.168.7.5) in place of the target computer name (for example, TargetPC1).
Load the real-time application, and start the application. Observe that the instrument panel provides
an interface to control the real-time application.

If you modify your real-time application or instrument panel app and repackage these, you do not
need to send the installer to your end-users. Instead, you can send them the updated EXE file from
the for_redistribution_files_only folder to replace the EXE file in their application folder.

See Also
Simulink Real-Time Explorer | Instrument

 Create Standalone Instrument Panel App by Using Application Compiler

14-15

Related Examples
• “Add App Designer App to Inverted Pendulum Model” on page 16-18

More About
• “App Building Components”
• “Manage Code in App Designer Code View”
• “Display and Filter Hierarchical Signals and Parameters” on page 7-65
• Application Compiler (MATLAB Compiler)

14 Simulink Real-Time Instruments and Instrument Panel Apps

14-16

Automated Test with Simulink Test

15

Test Real-Time Application in Simulink Test
This example shows how to perform a frequency-response test of the model slrt_ex_osc_sltest.

Using this information, in the design phase, you can modify the internal parameters of the model to
meet your frequency requirements. In the production phase, you can bin manufactured parts based
on frequency response.

Simulink Real-Time Simulink test

Test Assessment Block

Test Manager

Step 1
Set Model Configuration
Parameters

Step 2
Create Test Harness

Step 4
Configure Test Harness

Step 6
Prepare Test Assessment Steps

Step 7
Initialize Test Suite

Step 8
Initialize System Under Test

Step 9
Initialize Parameter Overrides

Step 10
Create Scripted Iterations

Step 11
Run Test and Display Results

Step 3
Set Test Harness Configuration
Parameters

Step 5
Configure Simulink
Parameters

Configuration Parameters

Model Advisor

Open the Model

To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_osc_sltest'));

15 Automated Test with Simulink Test

15-2

The figure shows representative output from a real-time application running on a target computer. At
low frequencies, the output of the Integrator1 block settles to the same value as the output of the
Signal Generator block. At high frequencies, the output of the Integrator1 block is still ringing at the
end of each pulse.

 Test Real-Time Application in Simulink Test

15-3

The test determines the highest frequency at which the output values of the Integrator and Signal
Generator blocks are within a specified criterion of each other. The test uses the model itself as a
signal source and uses a test harness to compare the outputs of the Integrator and Signal Generator
blocks.

Step 1. Set Model Configuration Parameters

1 Open model slrt_ex_osc_sltest in a writable folder.
2 Open the Configuration Parameters. On the Real-Time tab, click Hardware Settings.
3 Select Model Referencing > Total number of instances allowed per top model > One.
4 Select Data Import/Export > Format > Structure with time.
5 Select Data Import/Export > Time.
6 Select Data Import/Export > Output.
7 De-select Data Import/Export > States.
8 De-select Data Import/Export > Final states.
9 De-select Data Import/Export > Signal logging.
10 De-select Data Import/Export > Data stores.
11 De-select Data Import/Export > Log Dataset data to file.

15 Automated Test with Simulink Test

15-4

Step 2. Create Frequency Parameter

Create the parameter Frequency that is tuned at the end of this example.

1 Open model explorer.
2 Create a Simulink parameter Frequency in model workspace for model slrt_ex_osc_sltest.
3 Mark the parameter as a model argument.

Step 3. Create Test Harness

1 On the Simulink Apps tab, click Simulink Test.
2 On the Test tab, click Add Test Harness. The software creates a test harness with the default

name slrt_ex_osc_sltest_Harness1.
3 In the Basic Properties tab, for the Input to Component under Test, select None.
4 For the Output from Component under Test, select Outport.
5 Select the Add separate assessment block check box.
6 Select the Open harness after creation check box.
7 Take the defaults in the remaining tabs.

 Test Real-Time Application in Simulink Test

15-5

8. Click OK.

The example model slrt_ex_osc_sltest stores the test harness within the model. To access the
test harness from the example model:

1 In Simulink Editor, on the Test tab, click Manage Test Harnesses.
2 Click slrt_ex_osc_sltest_Harness1.
3 To return to the example model, select it in the perspectives view in the lower right corner of the

test harness.

Step 4. Set Test Harness Configuration Parameters

1 Open test harness slrt_ex_osc_sltest_Harness1.
2 Open the Configuration Parameters. On the Real-Time tab, click Hardware Settings.

15 Automated Test with Simulink Test

15-6

3 Select Model Referencing > Total number of instances allowed per top model > One.
4 Select Data Import/Export > Format > Structure with time.
5 Select Data Import/Export > Time.
6 Select Data Import/Export > Output.
7 De-select Data Import/Export > States.
8 De-select Data Import/Export > Final states.
9 De-select Data Import/Export > Signal logging.
10 De-select Data Import/Export > Data stores.
11 De-select Data Import/Export > Log Dataset data to file.

Step 5. Configure Test Harness

1 Open the Test Assessment block.
2 To simplify the test assessment configuration, in the Input symbol list, replace input Outport

with inputs Int1 and SigGen.
3 In slrt_ex_osc_sltest_Harness1, connect a Demux block to slrt_ex_osc_sltest/

Outport.
4 In the Demux block dialog box, set Number of outputs to 2.
5 To make the Demux outputs visible to the Test Assessment block, connect unitary Gain blocks to

each of the Demux block outputs.
6 Connect the top Demux block output to Test Assessment/Int1 and the bottom output to Test

Assessment/SigGen.

Step 6. Configure Simulink Parameters

1 Open the Model Explorer. On the Modeling tab, pull down the Design section and click Model
Explorer.

2 Click node slrt_ex_osc_sltest_Harness1 > Model Workspace.
3 In the toolbar, click the Add Simulink Parameter button.
4 Add the following data object:

• Name — Criterion
• Value — 0
• DataType — double
• Storage Class — ExportedGlobal

5. In a similar manner, add Simulink parameters w_open and w_close. Because these parameters are
in the slrt_ex_osc_sltest_Harness1 model workspace as model parameters, you access them by
name directly, without model hierarchy.

 Test Real-Time Application in Simulink Test

15-7

6. Save the model.

Step 7. Setup Frequency Argument

1 Right click on slrt_ex_osc_sltest_Harness1/slrt_ex_osc_sltest.
2 Select Block Parameter(Model reference).
3 Select Instance parameters on pop out window.
4 Mark Frequency as an argument.

Step 8. Prepare Test Assessment Steps

1. Open the Test Assessment block

2. Add these parameters to the Parameter symbol list:

• Criterion
• w_open
• w_close

3. To add a step, in the Step column, move the cursor to the top row, click Add step after, and type:

CheckSetting

4. Right-click step CheckSetting and set the When decomposition check box.

5. To add a substep to CheckSetting, click Add sub-step, and type:

 Hi when (SigGen > 0)

The when expression selects one half of the waveform.

6. Right-click substep Hi when and set the When decomposition check box.

15 Automated Test with Simulink Test

15-8

7. To substep Hi when, add substep:

 HiCheck when ((et >= w_open) && (et <= w_close))
 verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ...
 (abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

The when expression selects the time window for testing the acceptance criterion. The verify
command tests the acceptance criterion.

8. In a similar manner, to step CheckSetting, add substep:

 Lo when (SigGen < 0)

9. To substep Lo when, add substep:

 LoCheck when ((et >= w_open) && (et <= w_close))
 verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ...
 (abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

10. Right-click substep Lo when and set the When decomposition check box.

11. To satisfy the requirements of When decomposition, remove the default Run step and insert
DefaultStep substeps after steps CheckSetting, Hi when, and Lo when. When decomposition
requires at least two steps at each level of nesting, and one nondecomposed step at the end of each
list of steps.

Step 9. Initialize Test Suite

1 Click on the slrt_ex_osc_sltest subsystem.

 Test Real-Time Application in Simulink Test

15-9

2 On the Apps tab, click Simulink Test.
3 On the Test tab, click Test Manager.
4 Select New > Test File.
5 Name the test file realtimetest.
6 Right-click the test file and select New > Real-Time Test.
7 In the new real-time test dialog box, enter Simulation in the Test Type field.
8 Click Create.
9 Rename the new test suite to realtimesuite.
10 Rename the new test case to frequencysweep.

Step 10. Initialize System Under Test

1 In Test Manager, select node frequencysweep.
2 Select tab System Under Test.
3 Set Model to slrt_ex_osc_sltest.
4 In tab Test Harness, set Harness to slrt_ex_osc_sltest_Harness1.
5 In tab Simulation Settings and Release Overrides, select the Stop Time check box.
6 Take the defaults for the other fields.

Step 11. Initialize Parameter Overrides

1. In Test Manager, select tab Parameter Overrides.

2. Click the Add button. A dialog box opens containing a list of parameters. If parameters are not
visible, click the Refresh line at the top of the dialog box.

The refresh builds the model and uploads the model and block parameters from
slrt_ex_osc_sltest_Harness1 and slrt_ex_osc_sltest.

3. Open Parameter Set 1 and select the Criterion, Frequency, w_close, and w_open check boxes.
Leave the other check boxes cleared.

Step 12. Create Scripted Iterations

To configure and control iterated runs of the test harness, a number of constants and variables
provide input.

Test harness constants include:

• cStartFreq = 15.0 Start frequency of parameter sweep.
• cStopFreq = 25.0 End frequency of parameter sweep.
• cFreqIncr = 1.0 Frequency increment.
• cWOpen = 0.90 Start of time window for evaluating criterion.
• cWClose = 0.99 End of time window for evaluating criterion.
• cCriterion = 0.025 Maximum normalized amplitude difference between Signal Generator and

Integrator1 within the time window.

15 Automated Test with Simulink Test

15-10

Test harness variables include:

• vfreq Frequency at each iteration.
• vw_open Window opens once in each half-period.
• vw_close Window closes once in each half-period.

1 In Test Manager, select tab Iterations > Scripted Iterations.
2 In the text box, enter the following code. To resize the Scripted Iterations text box, click and

drag the lower-right corner of the box.

% Initialize constants
cStartFreq = 15.0;
cStopFreq = 25.0;
cFreqIncr = 5.0;
cWOpen = 0.90;
cWClose = 0.99;
cCriterion = 0.025;
% Loop through test frequencies
for vfreq = cStartFreq:cFreqIncr:cStopFreq
 % Create a new iteration
 testItr = sltest.testmanager.TestIteration();
 % Calculate the time window
 half_period = 0.5 * (1.0/vfreq);
 vw_open = half_period * cWOpen;
 vw_close = half_period * cWClose;
 % Set the parameters for the iteration
 testItr.setVariable('Name','Frequency','Source', ...
 'slrt_ex_osc_sltest','Value',vfreq);
 testItr.setVariable('Name','w_open','Source', ...
 '','Value', vw_open);
 testItr.setVariable('Name','w_close','Source', ...
 '','Value', vw_close);
 testItr.setVariable('Name','Criterion','Source', ...
 '','Value', cCriterion);
 % Name and add the iteration to the testcase
 str = sprintf('%.0f Hz', vfreq);
 addIteration(sltest_testCase, testItr, str);
end

Step 13. Run Test

1 Build and download slrt_ex_osc_sltest to the target computer.
2 In Test Manager, click the Run button.
3 To view test results, in the left column, click Results and Artifacts. In this case, the test failed

at iteration 23 Hz.
4 To view the failing results, open nodes 23 Hz > Verify Statements and 23 Hz > Sim Output

(slrt_ex_osc_sltest).

Step 14. Display Results

1 In the Simulation Data Inspector pane, select the Layout button.
2 Select two horizontal displays.
3 In the Simulation Data Inspector top display, select the two Out check boxes and the top Test

Assessment check box. This assessment corresponds to the HiCheck substep.

 Test Real-Time Application in Simulink Test

15-11

4 In the bottom display, select the two Out check boxes and the bottom Test Assessment check
box. This assessment corresponds to the LoCheck substep.

5 Click the Zoom in Time button and select the range 4.00-4.1.

In the top display, the vertical red line near 4.04 followed by a horizontal green line shows that the
HiCheck test failed briefly before succeeding. In the bottom display, the vertical red spike near 4.02
followed by a horizontal green line shows that the LoCheck test failed briefly before succeeding.

See Also
Test Assessment | Test Sequence

More About
• “Test Models in Real Time” (Simulink Test)
• “Reuse Desktop Test Cases for Real-Time Testing” (Simulink Test)

15 Automated Test with Simulink Test

15-12

Examples

13

Simulink Real-Time Examples

16

Parameter Tuning and Data Logging
This example shows how to use real-time parameter tuning and data logging with Simulink® Real-
Time™. After the example builds the model and downloads the real-time application,
slrt_ex_param_tuning, to the target computer, the example executes multiple runs with the gain
'Gain1/Gain' changed (tuned) before each run. The gain sweeps from 0.1 to 0.7 in steps of 0.05.

The example uses the data logging capabilities of Simulink Real-Time to capture signals of interest
during each run. The logged signals are uploaded to the development computer and plotted. A 3-D
plot of the oscillator output versus time versus gain is displayed.

Open, Build, and Download Model to the Target Computer

Open the model, slrt_ex_param_tuning. The model configuration parameters select the
slrealtime.tlc system target file as the code generation target. Building the model creates a real-
time application, slrt_ex_param_tuning.mldatx, that runs on the target computer.

model = 'slrt_ex_param_tuning';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

Build the model and download the real-time application, slrt_ex_param_tuning.mldatx, to the
target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param(model,'RTWVerbose','off');
set_param(model,'StopTime','0.2');
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);

Run Model, Sweep 'Gain' Parameter, Plot Logged Data

This code accomplishes several tasks.

16 Simulink Real-Time Examples

16-2

Task 1: Create Target Object

Create the MATLAB® variable, tg, that contains the Simulink Real-Time target object. This object
lets you communicate with and control the target computer.

• Create a Simulink Real-Time target object.
• Set stop time to 0.2s.

Task 2: Run the Model and Plot Results

Run the model, sweeping through and changing the gain (damping parameter) before each run. Plot
the results for each run.

• If no plot figure exist, create the figure.
• If the plot figure exist, make it the current figure.

Task 3: Loop over damping factor z

• Set damping factor (Gain1/Gain).
• Start run of the real-time application.
• Store output data in outp, y, and t variables.
• Plot data for current run.

Task 4: Create 3-D Plot (Oscillator Output vs. Time vs. Gain)

• Loop over damping factor.
• Create a plot of oscillator output versus time versus gain.
• Create 3-D plot.

figh = findobj('Name', 'parsweepdemo');
if isempty(figh)
 figh = figure;
 set(figh, 'Name', 'parsweepdemo', 'NumberTitle', 'off');
else
 figure(figh);
end
y = []; flag = 0;
for z = 0.1 : 0.05 : 0.7
 if isempty(find(get(0, 'Children') == figh, 1))
 flag = 1;
 break;
 end
 load(tg,model);
 tg.setparam([model '/Gain1'],'Gain',2 * 1000 * z);
 tg.start('AutoImportFileLog',true, 'ExportToBaseWorkspace', true);
 pause(0.4);
 outp = logsOut{1}.Values;
 y = [y,outp.Data(:,1)];
 t = outp.Time;
 plot(t,y);
 set(gca, 'XLim', [t(1), t(end)], 'YLim', [-10, 10]);
 title(['parsweepdemo: Damping Gain = ', num2str(z)]);
 xlabel('Time'); ylabel('Output');
 drawnow;
end

 Parameter Tuning and Data Logging

16-3

if ~flag
 delete(gca);
 surf(t(1 : 200), 0.1 : 0.05 : 0.7, y(1 : 200, :)');
 colormap cool
 shading interp
 h = light;
 set(h, 'Position', [0.0125, 0.6, 10], 'Style', 'local');
 lighting gouraud
 title('parsweepdemo: finished');
 xlabel('Time'); ylabel('Damping Gain'); zlabel('Output');
end

Close Model

When done, close the model.

close_system(model,0);

16 Simulink Real-Time Examples

16-4

Tune Decimation for File Log Data Without Model Rebuild
This example shows how to tune the decimation parameter on the File Log blocks in a real-time
application without rebuilding the model. The Application object methods
getAllFileLogBlocks, getFileLogDecimation, and setFileLogDecimation are used to
change the decimation value for the application MLDATX file. The application can be run again on the
target computer to observe the updated decimation of the signals connected to File Log blocks in the
model.

Open, Build, and Download Model

Open the model slrt_ex_filelogtunabledecimation>. This model uses File Log blocks to log
data on the target computer. The default setting for decimation is set to 1 for the File Log blocks. In
the MATLAB Command Window, type:

model = 'slrt_ex_filelogtunabledecimation';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

Build the top model and download to the target computer.

• Configure for a non-Verbose build.
• Build and download application.

set_param(model,'RTWVerbose','off');
set_param(model,'StopTime','5');
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);

Close the model

bdclose(model);

Run Real-Time Application

Run the real-time application on the target computer. Wait for the application to stop.

start(tg);
pause(7);

 Tune Decimation for File Log Data Without Model Rebuild

16-5

View Signals in the Simulation Data Inspector

Simulink.sdi.view;

Set File Log Block Decimation

Set the File Log block decimation for the blocks to the same value by using the Application object.
Create the Application object.

appObj = slrealtime.Application(model);

Get the File Log blocks in the application by using the getAllFileLogBlocks function.

16 Simulink Real-Time Examples

16-6

fileLogBlocks = appObj.getAllFileLogBlocks;

Get the File Log decimation setting for the blocks by using the getFileLogDecimation function.
The setting is 1 for both blocks.

oldDecimation = appObj.getFileLogDecimation(fileLogBlocks)

oldDecimation =

 1

Change the decimation for both blocks to 5 by using the setFileLogDecimation function.

appObj.setFileLogDecimation(fileLogBlocks, 5);

Confirm the new decimation value is set to 5.

newDecimation = appObj.getFileLogDecimation(fileLogBlocks)

newDecimation =

 5

Reload Application on Target Computer and Rerun

load(tg,model);
start(tg);
pause(7);

View New Signals in the Simulation Data Inspector

Simulink.sdi.view;

 Tune Decimation for File Log Data Without Model Rebuild

16-7

Set File Log Block Decimation

Set the File Log block decimation for blocks to different values by using the Application object.
Create the Application object

appObj = slrealtime.Application(model);

Get the File Log blocks in the application by using the getAllFileLogBlocks function.

fileLogBlocks = appObj.getAllFileLogBlocks;

Get the File Log decimation setting for the blocks by using the getFileLogDecimation function.
The setting is 1 for both blocks.

16 Simulink Real-Time Examples

16-8

oldDecimation = appObj.getFileLogDecimation(fileLogBlocks)

oldDecimation =

 5

Change the decimation for both blocks to 5 by using the setFileLogDecimation function.

appObj.setFileLogDecimation(fileLogBlocks, [1 2]);

Confirm the new decimation value is set to 5.

newDecimation = appObj.getFileLogDecimation(fileLogBlocks)

newDecimation =

 1
 2

Reload Real-Time Application and Rerun

load(tg,model);
start(tg);
pause(7);

View Signals in the Simulation Data Inspector

Simulink.sdi.view;

 Tune Decimation for File Log Data Without Model Rebuild

16-9

16 Simulink Real-Time Examples

16-10

Concurrent Execution on Simulink® Real-Time™
This example shows how to apply explicit partitioning to enhance concurrent execution of a real-time
application that you generate by using Simulink Real-Time.

Simulink Real-Time supports concurrent execution by using implicit partitioning or explicit
partitioning of models. This example shows the relationship between the explicit partitioning of the
tasks in the model subsystems and the execution of tasks by using the Simulink Real-Time profiling
tool.

The example model slrt_ex_mds_and_tasks runs at sample rate of 0.001 second.

To run the model with adjusted sample rate of 0.01 second, change the sample rated before running
the example. In the MATLAB Command Window, type:

Ts = 0.01;

Open, Build, and Download the Model

The explicit partitioning in the top-level model occurs in subsystem1.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_mds_subsystem1'));

 Concurrent Execution on Simulink® Real-Time™

16-11

The explicit partitioning in the top-level model occurs in subsystem2.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_mds_subsystem2'));

16 Simulink Real-Time Examples

16-12

Open the model slrt_ex_mds_and_tasks. The model is mapped to seven threads: Model1_R1,
Model1_R2, Model1_R3, Model1_R4, Model2_R1, Model2_R3, and Model2_R4.

These threads run at sample rates of Ts, 2*Ts, 3*Ts, 4*Ts, Ts, 3*Ts, and 4*Ts.

model='slrt_ex_mds_and_tasks';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

 Concurrent Execution on Simulink® Real-Time™

16-13

To apply explicit partitioning, in the Simulink Editor, on the Real-Time tab, click Hardware
Settings, and then select Solver > Configure Tasks. Select the Tasks and Mapping node.

16 Simulink Real-Time Examples

16-14

Build, download, and run the model.

set_param(model,'RTWVerbose','off');
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);
% Open TET Monitor
slrtTETMonitor;
% Start profiler on the target computer
startProfiler(tg);
start(tg);
pause(2);
stop(tg);

Display Profiling Data

The profiling data shows the execution time of each thread on a multi-core target computer.

profData = tg.getProfilerData;
profData.plot;

Processing data on target computer ...
Transferring data from target computer ...

 Concurrent Execution on Simulink® Real-Time™

16-15

Processing data on host computer ...

View TET Information in TET monitor

16 Simulink Real-Time Examples

16-16

View TET Information in the Simulation Data Inspector

See Also

For more information, see:

• “Generate Subsystem Code as Separate Function and Files”
• “Generate Code and Executables for Individual Subsystems”
• “Generate Inlined Subsystem Code”
• “Generate Subsystem Code as Separate Function and Files”
• “Generate Reusable Code from Library Subsystems Shared Across Models”

Close the Model

bdclose('all');

 Concurrent Execution on Simulink® Real-Time™

16-17

Add App Designer App to Inverted Pendulum Model
This example shows how to stream signal signals to an App Designer instrument panel app from a
Simulink Real-Time application. The example builds the real-time application from the model
slrt_ex_pendulum_100Hz. The instrument panel contains these App Designer components:

• Target selector dropdown list — To show all the available target computers.
• Connect/disconnect button — To connect or disconnect the target computer chosen in the drop

down window.
• Load button — To load the application to the target computer.
• Start/stop button — To start or stop the application on the target computer.
• Stop time edit field — To display and set the stop time of the application loaded on the target

computer.
• Status message box — To display target computer status information.
• Axes — To display an animation for the two inverted pendulum and cart system.
• Axes — To display signal output for responses to disrupting the pendulum.
• Nudge cart button — To apply input (nudge) to the cart that hold the pendulum.
• Reference position knob — To change the reference position of the pendulum and cart system.
• Reference variation pattern knob — To add a variation pattern to the reference position of the

pendulum and cart system.
• Amplitude slider — To adjust the amplitude of the chosen reference variation pattern.
• Frequency slider — To modify the frequency of the chosen reference variation pattern.

To stream signal and parameter data between the real-time application and the instrument panel app,
the app uses the instrumentation object.

Open Example and Load Model

openExample('SlrtAddAppDesignerAppToInvertedPendulumModelExample');

load_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_pendulum_100Hz'));

Start Target Computer and Build Real-Time Application

These tasks generate the real-time application that streams data to the App Designer instrument
panel app.

1 Start the target computer.
2 Open the model slrt_ex_pendulum_100Hz.
3 Connect the development computer to the target computer. Build the

slrt_ex_pendulum_100Hz model.
4 Deploy the real-time application to the target computer.

In the MATLAB Command Window, type:

model = 'slrt_ex_pendulum_100Hz';
set_param(model, 'RTWVerbose', 'off');
tg = slrealtime;
evalc('slbuild(model)');
load(tg,model);

16 Simulink Real-Time Examples

16-18

Run App Designer Instrument Panel App

The App Designer instrument panel app slrt_ex_pendulumApp provides controls to start and
interact with the real-time application slrt_ex_pendulum_100Hz.

1. Run the app. To start the App Designer app slrt_ex_pendulumApp.mlapp and create the handle
app, in the MATLAB Command Window, type:

app = slrt_ex_pendulumApp;

2. To connect with an available target computer, click the connect button. The text on the button will
switch to 'disconnect' and the load button will be enabled.

3. To load the application to the target computer, click the load button. After the application is loaded
on the target computer, the start button and stop time edit field will be enabled.

4. To set the stop time of the application, type your preferred stop time in the edit field and hit enter
button.

5. To start running the application, click the start button.

6. To disrupt the equilibrium of the pendulum on each cart, click the Nudge button. You can adjust
the nudge magnitude by using the value selection next to the button, hange the reference position by

 Add App Designer App to Inverted Pendulum Model

16-19

adjusting the value of reference position spinner, or choose a variation pattern for the reference
position.

App Callback Code

The instrument panel app functionality is provided by callback code.

Comments in the callback code in the instrument panel app slrt_ex_pendulumApp.mlapp describe
the callback operations and programming suggestions. To view the callback code, open
slrt_ex_pendulumApp.mlapp in the App Designer, and then click the Code View tab. In the
Command Window, type:

edit slrt_ex_pendulumApp

Specify Block Paths for Signals in Referenced Models

To stream data from signals in the model, see the use of connectLine functions in the
setupInstrumentation(app) function in the app.

updateAnimationCallback Function

16 Simulink Real-Time Examples

16-20

For each AcquireGroup, this function checks whether there is fresh data since the last time the
callback was called. If there is data, the function updates the animation objects.

Signals are placed in Acquire Groups based on sample rate and decimation such that all signals in an
Acquire Group have the same time vector.

Update Axes and Animation by Using Acquire Groups

In the callback code, this processing is visible as AcquireGroupData signal groups in the
updateAnimationCallback function.

Close the App and Models

The instrument panel app handle app provides access to close the app.

Close the app. In the MATLAB Command Window, type:

close(app.UIFigure)

Close the open models. In the Command Window, type:

bdclose ('all');

 Add App Designer App to Inverted Pendulum Model

16-21

Basic App Designer App for Real-Time Application Interface
This example shows a basic App Designer app that provides an interface to a real-time application.

Open Model and Build Real-Time Application

Open the model slrt_ex_waves and build the real-time application.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_sine_waves'));
model='slrt_ex_sine_waves';
evalc('slbuild(model)');

Open Real-Time Application Interface App

Open the real-time application interface app slrt_sine_waves_App.

16 Simulink Real-Time Examples

16-22

Control Run Real-Time Application

Use the App Designer app controls to:

• Select the target computer by using the target selector list.
• Toggle from Disconnected to Connected by using the connect button.
• Load the real-time application by using the load button.
• Start the real-time application by using the start button.

When done, stop the application by using the stop button.

 Basic App Designer App for Real-Time Application Interface

16-23

Examing Code View for Interface App

In App Designer, click the Code View tab to view the code that connects the real-time application to
the App Designer app. This code that executes after the app creates components uses a small number
of Simulink Real-Time functions to:

• Create and configure the tuner component
• Create and configure the instrument component
• Start the instrument manager for the app

function startupFcn(app)
 % Add Parameter Tuner Component
 Tuner = slrealtime.ui.tool.ParameterTuner(app.UIFigure);
 Tuner.Component = app.AmplitudeKnob;
 Tuner.BlockPath = 'slrt_ex_sine_waves/Sine Wave';
 Tuner.ParameterName = 'Amplitude';

 % Add Instrument Component
 Instrument = slrealtime.Instrument;
 Instrument.connectLine(app.UIAxes,'slrt_ex_sine_waves/Sine Wave',1);
 Instrument.AxesTimeSpan = 1;

 InstrumentManager = slrealtime.ui.tool.InstrumentManager(app.UIFigure);
 InstrumentManager.Instruments = Instrument;
end

Close All Open Files

bdclose('all');

16 Simulink Real-Time Examples

16-24

Connect Triggered Subsystem by Using Thread Trigger
This example shows how to connect the Thread Trigger block and create a triggered subsystem. This
not-often-used approach lets you use conditions in the model to trigger tasks instead of by using the
much more typical approach of using a hardware interrupt from an I/O device in the target computer
to trigger tasks.

To open this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_thread_trigger_fc_subsystem'));

See Also

• Thread Trigger
• Function-Call Subsystem
• Triggered Subsystem
• “About RTOS Tasks and Priorities”
• “Execution Modes” on page 8-2

 Connect Triggered Subsystem by Using Thread Trigger

16-25

EtherCAT® Protocol with Beckhoff® Analog IO Slave Devices
EL3062 and EL4002

This example shows how to communicate with EtherCAT devices using the Beckhoff® analog I/O
terminals EL3062 and EL4002.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Master device and two analog input/output terminals EL3062 and EL4002 as EtherCAT Slave devices.
This example requires a dedicated network port that is reserved for EtherCAT using the Ethernet
Configuration tool on the target computer. Use the reserved port for EtherCAT communication. This
port is in addition to the port used for the Ethernet link between the development and target
computers.

To RPS +Ve
To RPS –Ve

EtherCAT In

To test this model:

1 Connect the reserved network port in the target computer to the network IN port of the
Beckoff® EK1100 coupler.

2 Assemble Terminals EL3062 and EL4002 with Coupler EK1100.
3 Loop back the I/O ports: Connect each output port of Terminal EL4002 to a corresponding input

port of Terminal EL3062.
4 Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model creates two sine wave signals and sends the signals to the EL4002 terminal. The model
receives input signal values from the EL3062 terminal.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB Command Window, type:

16 Simulink Real-Time Examples

16-26

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercat_beckhoff_aio'));

Figure 1: EtherCAT model using Beckhoff® analog I/O slave devices EL3062 and EL4002.

Configure the Model

Open the mask for the EtherCAT Init block and observe the pre-configured values. The EtherCAT
slave devices that are daisy chained together with Ethernet cable is a Device, also referred to as an
EtherCAT network. The Device Index selects one such chained EtherCAT network. The Ethernet Port
Number identifies which Ethernet port to use to access that Device. The EtherCAT Init block connects
these two so that other EtherCAT blocks use the Device Index to communicate with the slave devices
on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI file for different A/D D/A slave devices, if needed

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is BeckhoffAIOconfig.xml.

The ENI (EtherCAT Network Information) file that is provided with this example has an EK1100 with
EL3062 and EL4002 slaves attached, in that order. If you have different analog IO modules, you need
to create a new ENI file for that collection.

 EtherCAT® Protocol with Beckhoff® Analog IO Slave Devices EL3062 and EL4002

16-27

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup for which it has
been created (for example, the network discovered in step 1 of the configuration file creation
process). The configuration file provided for this example is valid if and only if the EtherCAT network
consists of terminals EK1100, EL3062, and EL4002.

The ENI file defines a set of transmit and receive variables. For this example, a set of receive
variables are defined for each input channel of terminal EL3062. Make sure the variables for channel
1 and channel 2 of terminal EL3102 are selected respectively in the two EtherCAT PDO Receive
blocks. These two variables are Term 2 (EL3062).AI Standard Channel 1.Value and Term 2
(EL3062).AI Standard Channel 2.Value.

A set of transmit variables are defined for the two output channels of terminal EL4002. Make sure the
variables for channel 1 and channel 2 of terminal EL4002 are selected in the two EtherCAT PDO
Transmit blocks. These two variables are Term 3 (EL4002).AO Outputs Channel 1.Analog
Output and Term 3 (EL4002).AO Outputs Channel 2.Analog Output.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the three host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed there.

Zooming into the first quarter second of execution for this model, on all three of the scopes shows:

Scope shows the notifications in yellow and the state in blue. The only notificatons have the value of 1
which has meaning that the state has changed. Each of those is aligned with a step in the state
output. Because this ENI file does not use distributed clock synchronization, the progression to Op
state is very fast, just over 0.1 second. Also, because this ENI file does not use distributed clocks, the
last 4 elements of the vector out of the init block are all 0.

16 Simulink Real-Time Examples

16-28

Scope1 shows the 1Hz sinewave output in yellow and the value read back by the A/D in blue. Notice
that there is no input until the EtherCAT state has progressed to Op state just after .1 seconds. If you
zoom in tighter, you notice that the A/D signal is delayed by several clock cycles from the D/A output.
This is because the A/D is read before the D/A is commanded to a new value and the A/D value is not
available until the next sample time. This D/A slave takes a signed int as input, but can only output in
the range of [0,+10] volts so the input values only show positive values, even though this A/D can
read inputs from [-10,+10].

Scope2 shows the 2Hz sinewave sent to the second D/A channel, with the same delayed start on input
and delayed response to a change.

The second way is to build the model (slbuild() or ^B), download from the MATLAB command line
and run from the command line. In that case, the scope blocks do not display data, but the Simulation
Data Inspector can be used.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, use the
MODELING tab on the model editor toolstrip to change the Stop Time and rebuild.

Display the Target Computer data

After running the model, you can also use the Simulation Data Inspector to view any signal that has
been marked for signal logging. Signals marked for signal logging have a dot with two arcs above it
in the model editor.

Stop and Close the Model

When the example completes its run, stop and close the model.

close_system('slrt_ex_ethercat_beckhoff_aio');

 EtherCAT® Protocol with Beckhoff® Analog IO Slave Devices EL3062 and EL4002

16-29

See Also

• “EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices EL1004 and EL2004” on page 16-
31

• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”

16 Simulink Real-Time Examples

16-30

EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices
EL1004 and EL2004

This example shows how to communicate with EtherCAT devices using the Beckhoff digital I/O
terminals EL1004 and EL2004.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Master device and two analog input/output terminals EL1004 and EL2004 as EtherCAT Slave devices
attached to an EK1100 coupler.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To RPS +Ve
To RPS –Ve

EtherCAT In

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the network IN port of
the Beckoff® EK1100 coupler.

2 Assemble Terminals EL1004 and EL2004 with Coupler EK1100.
3 Loop back the first two I/O ports: Connect ports numbered O1 and O2 of Terminal EL2004 to

ports numbered I1 and I2 of Terminal EL1004. Ports O3, O4, I3 and I4 are not used by this
example.

4 Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see the Simulink Real-Time EtherCAT
documentation.

Open the Model

This model drives a pulse wave signal and transmits the signal and its inverse as Boolean values to
the EL2004 terminal, and receives the input signal transmitted by the EL1004 terminal.

 EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

16-31

The EtherCAT initialization block can be configured with either the full path to the ENI file or with a
relative path that can be found with the MATLAB which command. Copy the example configuration
file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercat_beckhoff_dio'));

Figure 1: EtherCAT model using Beckhoff® digital I/O terminals EL1004 and EL2004.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Describe Network with Configurator

Using a third-party EtherCAT configuration program that you install on a development computer,
generate an EtherCAT configuration (ENI) file. The ENI file for this example is
BeckhoffDIOconfig.xml.

16 Simulink Real-Time Examples

16-32

The ENI (EtherCAT Network Information) file that is provided with this example has an EK1100 with
EL2004 and EL1004 slaves attached, in that order. If you have different digital IO modules, you need
to create a new ENI file for that collection.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation process). The
configuration file provided for this example is valid if and only if the EtherCAT network consists of
Terminals EK1100, EL1004, and EL2004 from Beckhoff®.

The ENI file defines a set of transmit and receive variables. For this example, four receive variables
are defined for the four input channels of Terminal EL1004. Only the first two channels of Terminal
EL1004 are used in this example. Make sure the receive variables for channel 1 and channel 2 of
terminal EL1004 are selected respectively in the two EtherCAT PDO Receive blocks. These two
variables are Term 3 (EL1004).Channel 1.Input and Term 3 (EL1004).Channel 2.Input.
In the same way, four transmit variables are defined for the four output channels of terminal EL2004,
but only the first two channels are tested in this example. Make sure the transmit variables for
channel 1 and channel 2 of terminal EL2004 are selected respectively in the two EtherCAT PDO
Transmit blocks. These two variables are Term 2 (EL2004).Channel 1.Output and Term 2
(EL2004).Channel 2.Output.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the three host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed.

The three scopes are Scope, Scope1 and Scope2.

Both notifications from the EtherCAT state machine and the current state are displayed in Scope.
Since there are no errors, the only notifications visible are the value 1 which means a state change at
that execution time step. The current state indicates the state that resulted from that state change.
Notice that Op (=8) state is reached very fast since this ENI file does not include distributed clock
synchronization. This view is zoomed in to the first 0.2 seconds of execution to show the transition to
Op state clearly.

 EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

16-33

Scope1 and Scope2 show almost the same thing, but for two different channels. The signal is inverted
between the two of them as can be seen if you compare the time when there is a rising edge in the
yellow trace. The time step when physical IO starts is when the state goes to Op state. Before that,
there is no input or output and the blue traces stay at 0. There is a time delay between the signal
being sent to the output blocks and the signal that comes back from the input blocks for two reasons.

There is a 2 time step delay due to EtherCAT communication which is followed by an additional delay
due to the speed of the hardware IO. The return signal shows a definite asymmetry between the delay
after sending a rising edge and the delay after sending a falling edge. If you inspect the actual output
signal with an oscilloscope, you see that the output is actually symmetric, but it is the input that has
additional hardware delay in it. Other DIO slaves show different delay characteristics.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer data

After running the model, you can use the Simulation Data Inspector to view any signal that has been
marked for signal logging. Signals marked for signal logging have a dot with two arcs above it in the
model editor.

Observations to notice

Because data is both received from and sent to the slaves as the final action during execution and
received data on one time step is only available during the following time step, you should see a delay
between the data being sent and the return value. In addition with digital IO, writing a new value to
an output takes a few microseconds to appear as a change in voltage which is after the input was
captured, there is a 2 time step delay from an output edge until the input shows the edge in the data.

16 Simulink Real-Time Examples

16-34

Close the Model

When the example completes its run, stop and close the model.

close_system('slrt_ex_ethercat_beckhoff_dio');

See Also

• “EtherCAT® Protocol with Beckhoff® Analog IO Slave Devices EL3062 and EL4002” on page 16-
26

• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”

 EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

16-35

EtherCAT® Protocol Motor Velocity Control with Accelnet™
Drive

This example shows how to control the velocity of a motor by using EtherCAT communication. The
example motor drive is from Copley Instruments. This drive uses the CIA-402 (Can In Automation
402) device profile common to many drives. The example can work with other CIA-402 EtherCAT
drives if you generate an appropriate ENI file.

Requirements

This example is preconfigured to use an EtherCAT network that consists of the target computer as
EtherCAT Master device and an Accelnet™ AEP 180-18 drive from Copley Controls as EtherCAT Slave
device. Connect a supported brushless or brush motor to the drive. An example motor that works
with this example is the SM231BE-NFLN from PARKER.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the dedicated network port in the target computer to the EtherCAT IN port of the
Accelnet™ drive.

2 Connect a motor to the Accelnet™ drive.
3 Make sure that the Accelnet™ drive is supplied with a 24-volt power supply.
4 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “EtherCAT® Protocol Sequenced Writing
CoE Slave Configuration Variables” on page 16-62.

Open the Model

This model sends a varying velocity command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercatVelocityControl'));

16 Simulink Real-Time Examples

16-36

https://www.copleycontrols.com/en/support/
https://www.parkermotion.com/

Figure 1: EtherCAT model for motor velocity control.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI file for a Different CIA-402 Drive

If you need to create a new ENI file, you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is CopleyMotorVelocityConfig.xml.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation process). The
configuration file provided for this example is valid if and only if the EtherCAT network consists of
one Accelnet™ drive from Copley Controls. If you have a different EtherCAT drive that uses the
CIA-402 command set, this example still works, but you need to create a new ENI file that uses your
drive.

 EtherCAT® Protocol Motor Velocity Control with Accelnet™ Drive

16-37

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

For this example, four receive PDO variables are defined in the configuration file and three are used
in the three EtherCAT PDO Transmit blocks: Control Word, Modes of Operation, and Target
Velocity. The fourth variable: Profile Target Position is used in example “EtherCAT® Protocol Motor
Position Control with Accelnet™ Drive” on page 16-41.

• The Control Word PDO variable serves to control the state of the drive. The constant value 15 is
given as input to the block to set the first 4 bits to 1 to enable the drive. Refer to the EtherCAT
User Guide from Copley Controls for details on the bits mapping of this variable. This variable and
bit mapping is in the CIA-402 standard set.

• The Modes of Operation PDO variable serves to set the drive operating mode. The constant value
3 is given as input to the block to set the mode of the drive to Profile Velocity mode. For
details on supported modes of operation, see the Refer to the Copley Controls EtherCAT User
Guide. This variable and bit mapping is in the CIA-402 standard set.

• The Target Velocity PDO variable serves to set the desired velocity. In this example, the velocity
command at the input of the block can be tuned using the slider connected to the gain block
parameter.

Three transmit PDO variables are also defined in the configuration file and used in the three
EtherCAT PDO Receive blocks: Status Word, Actual Motor Velocity, and Actual Motor Position. Note
that EtherCAT refers to variables that the slave sets as transmit variables which are received by the
target model.

• The Status Word PDO variable indicates the current state of the drive.
• The Actual Motor Velocity and Actual Motor Position PDO variables indicate the current values of

the motor velocity and position as read in the drive.

Make sure that the required transmit and receive PDO variables are selected in the blocks as
illustrated in Figure 1 before running the example. You could need to refresh these variables by
opening the dialogs and selecting the current variable again.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the host side scopes by double clicking each, data is relayed from the target back to the
development computer and displayed.

Included in the model is the ability to control the peak amplitude of the velocity. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

16 Simulink Real-Time Examples

16-38

https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/

Display the Target Computer Scopes

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the host. Also, the slider is active in external mode.

The Scope output images are referred to by the name in the title bar for each image. Discussion
follows each image.

Scope shows the target to slave timing error as synchronization takes place using the bus shift
method. The slave is adjusted to match the target timing resulting in a damped wave showing good
phase lock around 4.5 to 5 seconds. The hash is a manifestation of the QNX execution scheduler and
is what is expected. On this graph, 5000 is in nanoseconds, so this shows synchronization between 0
and -2 microseconds with residual random errors.

Scope1 shows the progression of states as the drive is initialized. Most of the time is taken to achieve
time synchronization between target and EtherCAT slaves. The SafeOp (=4) to Op (=8) state
transition occurs after a short settling time once the timing error is below the allowed error.

 EtherCAT® Protocol Motor Velocity Control with Accelnet™ Drive

16-39

Scope2 shows the position of the motor which is a phase shifted version of the sine wave velocity that
is sent to the motor. Note that the motor position does not change until the drive goes to Op state
around 4.3 seconds.

Scope3 shows the velocity that is sent to the drive and the velocity read back from the drive. The
velocity does not change until the drive goes into Op state.

After running the model, you can also use the Simulation Data Inspector to view any signal that has
been marked for signal logging. Signals marked for signal logging have a dot with two arcs above it
in the model editor.

Observations to notice

The velocity command for the motor is a low frequency sine wave. The actual velocity read back from
the controller is delayed by several sample times and the actual position is out of phase by 90 degrees
from the actual velocity, as expected for sinewave variation.

Stop and Close the Model

When the example completes its run, stop and close the model.

close_system('slrt_ex_ethercatVelocityControl');

See Also

• “EtherCAT® Protocol Motor Position Control with Accelnet™ Drive” on page 16-41
• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”

16 Simulink Real-Time Examples

16-40

EtherCAT® Protocol Motor Position Control with Accelnet™
Drive

This example shows how to control the position of a motor by using EtherCAT communication. The
example motor drive is from Copley Instruments. This drive uses the CIA-402 (Can In Automation
402) device profile common to many drives. The example can work with other CIA-402 EtherCAT
drives if you generate an appropriate ENI file.

Requirements

This example is preconfigured to use an EtherCAT network that consists of the target computer as
EtherCAT Master device and an Accelnet™ AEP 180-18 drive from Copley Controls as EtherCAT Slave
device. Connect a supported brushless or brush motor to the drive. An example motor that works
with this example is the SM231BE-NFLN from PARKER.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the Accelnet™ drive.

2 Connect a motor to the Accelnet™ Drive.
3 Make sure the Accelnet™ drive is supplied with a 24-volt power source.
4 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model creates a sine wave, and modulates it by multiplying by the value of the slider control. The
modulated signal is sent as motor position command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercatPositionControl'));

 EtherCAT® Protocol Motor Position Control with Accelnet™ Drive

16-41

https://www.copleycontrols.com/en/support/
https://www.parkermotion.com/

Figure 1: EtherCAT model for controlling the position of a motor.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI File for a Different CIA-402 Drive

If you need to create a new ENI file, you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is CopleyMotorPositionConfig.xml.

Each ENI file is specific to the exact network setup from which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of one Accelnet™ drive
from Copley Controls. If you have a different EtherCAT drive that uses the CIA-402 CanOpen profile,

16 Simulink Real-Time Examples

16-42

this example still works, but you need to create a new ENI file that uses your drive. Refer to Can In
Automation web site at www.can-cia.org for details. EtherCAT CoE embeds CanOpen addressing for
process variables using EtherCAT as the transport layer instead of CAN.

An overview of the process for creating an ENI file is at “Configure EtherCAT Network by Using
TwinCAT 3”

For this example, four receive PDO variables are defined in the configuration file and three are used
in the three EtherCAT PDO Transmit blocks: Control Word, Modes of Operation, and Profile Target
Position. The fourth variable: Target Velocity is used in example “EtherCAT® Protocol Motor Velocity
Control with Accelnet™ Drive” on page 16-36.

• The Control Word PDO variable serves to control the state of the drive. The constant value 15 is
given as input to the block to set the first 4 bits to 1 to enable the drive. For details on the bit
mapping of this variable, refer to the Can In Automation web site. This variable and bit mapping is
in the CIA-402 device profile.

• The Modes of Operation PDO variable serves to set the operating mode of the drive. The constant
value 8 is given as input to the block to set the mode of the drive to Cyclic Synchronous
Position mode. For detailed documentation, refer to the Can In Automation web site. This
variable is in the CIA-402 device profile.

• The Profile Target Position PDO variable serves to set the desired position. In this example, the
position command given as input to the block is a sine wave modulated by the constant Amplitude
value linked to the slider control in the model.

Transmit PDO variables (transmitted by the slave) are also defined in the configuration file and one is
used in the EtherCAT PDO Receive block: Actual Motor Position for the drive. The Actual
Motor Position PDO variable indicates the current value of the motor position as read in the drive.
Make sure the required transmit and receive PDO variables are selected in the blocks before running
the example. You could need to refresh these variables. Note that EtherCAT refers to variables that
the slave sets as transmit variables which are received by the target model.

Make sure that the required transmit and receive PDO variables are selected in the blocks as
illustrated in Figure 1 before running the example. You could need to refresh these variables by
opening the dialogs and selecting the current variable again.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed.

Included in the model is the ability to control the amplitude of the cycling motion. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build and run.

 EtherCAT® Protocol Motor Position Control with Accelnet™ Drive

16-43

https://www.can-cia.org
https://www.can-cia.org
https://www.can-cia.org

Display the Target Computer data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the host. Also, the slider is active in external mode.

Scope shows the Distributed Clocks timing difference between the master stack running on the target
computer and the timing on the drive. This ENI file is configured to use Master Shift mode for DC.
The clock on the target computer is adjusted to match the timing on the EtherCAT reference clock on
the first DC enabled slave.

Scope1 shows the state progression from Idle to Init (=1) to PreOp (=2) to SafeOp (=4) for a very
short time visible if you zoom in, to Op (=8) at around 4.3 seconds.

Scope2 shows both the sine wave being sent to the drive (blue) and the actual position (yellow). This
is zoomed into the few seconds right when the drive went to Op state and external control starts.
Since the motor hardware cannot respond instantaneously, and the commanded position is not 0, you
see the actual position ramp up and overshoot slightly before settling down to follow the commanded
position. The time delay between command and actual is roughly 18 sample time steps with this

16 Simulink Real-Time Examples

16-44

drive. The controller inside the drive and motor inertia are responsible for this longer time delay.
Other drives may have different delay characteristics.

After running the model, you can use the Simulation Data Inspector to view any signal that has been
marked for signal logging. Signals marked for signal logging have a dot with two arcs above it in the
model editor.

Observations to notice

This is a simple motor control example. The numerous tunable parameters inside the drive are not
adjusted in this model. Adjusting those needs a more advanced model using the CoE/SDO blocks.

Close the Model

When the example completes its run, stop and close the model.

close_system('slrt_ex_ethercatPositionControl');

See Also

• “EtherCAT® Protocol Motor Velocity Control with Accelnet™ Drive” on page 16-36
• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”

 EtherCAT® Protocol Motor Position Control with Accelnet™ Drive

16-45

Generate ENI Files for EtherCAT® Devices
This example shows how to generate EtherCAT network information (ENI) files to use in Simulink®
Real-Time™ with EtherCAT devices.

The example shows the generation process steps in EtherCAT Configurator and the process steps in
the TwinCAT XAE plugin for Microsoft Visual Studio®.

The hardware connections are:

• EK1100 -- EtherCAT coupler
• EL3062 -- EtherCAT terminal
• EL4002 -- EtherCAT terminal
• EL9011 -- Bus End terminal

The EK1100 coupler connects EtherCAT with the EtherCAT terminals (ELxxxx). One station consists
of an EK1100 coupler, any number of EtherCAT terminals, and a bus end terminal.

To provide power connections, connect the 24 V and 0 V terminals of the EK1100 to a 24 V regulated
power supply (RPS) +Ve and -Ve terminals.

The EL3062 analog input terminal processes signals in the range of [-10, 10] V.

The EL4002 analog output terminal generates signals in the range of [0, 10] V.

To configure the EtherCAT network, connect the EtherCAT devices to the development computer on
which the EtherCAT configurator is running. This connection permits scanning and discovery of the
EtherCAT devices. After the configurator generates the XML file, you can reconnect the EtherCAT
devices to the target computer. This diagram shows the suggested connections.

To RPS +Ve
To RPS –Ve

EtherCAT In

Install TwinCAT 3.1 XAE and Run Microsoft Visual Studio® with TwinCAT

The latest version of TwinCAT is the 3.x version and that is the preferred configuration tool.

The XAE sub version does not contain the full run time engine that runs on Windows. This is available
free of charge from the Beckhoff web site. For use with Simulink Real-Time, you do not need the run
time engine because you are using the run time implementation on the target. The full version with
run time engine requires the purchase of a license from Beckhoff.

16 Simulink Real-Time Examples

16-46

The TwinCAT 3.1 software requires a supported version of Microsoft Visual Studio to be installed.
TwinCAT 3.1 uses the MSVC GUI integration and does not have a GUI by itself. The versions of MSVC
with which a given version of TwinCAT works are discussed in the TwinCAT documentation.
Installation finds supported MSVC versions on your machine and installs to them.

To install the TwinCAT 3.1 XAE:

1 Go to www.beckhoff.com and select Download.
2 Select TwinCAT 3 and download the setup.
3 Install TwinCAT 3.
4 Start Microsoft Visual Studio.
5 From the TwinCAT menu, select Show Realtime Ethernet Compatible Devices.
6 Select the Ethernet adapter for your EtherCAT device, then select Install.

Because TwinCAT installs an Ethernet filter inline with the Ethernet port you have selected, it is good
practice to add an extra Ethernet port to use exclusively with EtherCAT to avoid any possible problem
the filter can cause when sharing the Simulink Real-Time host-target communication port with
TwinCAT.

All EtherCAT configuration programs use EtherCAT Slave Information (ESI) files to describe the
slaves that are found on the network. These Beckhoff configuration programs come prepopulated
with mostly Beckhoff devices. To correctly configure an EtherCAT network with devices from other
manufacturers, you may need to get the correct ESI file from the device manufacturer web site. If you
do not have an ESI file for a slave on your network, the scan process does not populate the Solution
Explorer with the correct name of the device and the read and write variables are not correct.

To create a new TwinCAT project in Visual Studio:

1 Start Visual Studio. Go to File > New > Project.
2 Under Installed, select TwinCAT Projects and click OK.
3 Verify whether the project has been created successfully in the status bar of Microsoft Visual

Studio.
4 Enter your license if this instance is the first time that you are using TwinCAT and you installed

the full version. If you are using TwinCAT in evaluation mode, fill in the Captcha.
5 Observe the Solution Explorer pane the left side of Visual Studio.
6 Go to TWINCAT in the menu and select Scan. You can also right click Solution Explorer >

your TwinCAT project > I/O > Devices > Scan.
7 A dialog box opens with the message All devices may not automatically be found. Click OK

and wait for the scan to complete. You now see a dialog box saying New I/O devices have been
found.

8 Ensure that the check box is selected, then click OK. A dialog box appears with a Scan for
boxes? message. Click Yes. The EtherCAT devices in your network are scanned, and the devices
appear.

9 You see a dialog box that asks whether to activate free run mode. Select No.
10 Observe the Solution Explorer and verify that the devices were scanned correctly.

When you first start TwinCAT the right information panel is not displayed. You need to double-click
any item in the tree view the first time. After that the information dialog for any item is displayed by a
single click on that item in the Solution Explorer tree view.

 Generate ENI Files for EtherCAT® Devices

16-47

https://www.beckhoff.com/

Configure EtherCAT Master Node Data with TwinCAT

To configure the EtherCAT master node, create and configure a task, then add the inputs and outputs
to the task.

To create an EtherCAT Task:

1 In the Solution Explorer, right-click the Tasks node and select Add New Item.
2 In the Insert Task dialog box, select TwinCAT Task With Image, provide a name for the task,

and click OK.
3 Select the task that you created. The value Cycle Ticks determines the cycle time as a multiple

of the Base Time determined on the Real-Time item. The default task time is set to 10 ms. If
you are using Distributed Clock synchronization, a task time of 1-2 ms is the slowest that works
with Master Shift DC mode.

4 Create at least one cyclic input/output task. Link this task to at least one input variable and one
output variable on each slave device.

5 If you want to run faster than 1ms time, you need to change the base time on the Real-Time item
above Tasks. On the Settings tab, you need to change the Base Time selection to a faster one.

By using distributed clocks (DC), the EtherCAT protocol can synchronize the time in all local bus
devices within a narrow tolerance range. Only some EtherCAT devices support DC. It is important
that if a device supports DC, you configure it accordingly. For example, in the example configuration,
the EL4002 supports DC. Most motion controllers (motor drives) support DC and some require it to
get to Op state.

16 Simulink Real-Time Examples

16-48

To configure EtherCAT DC:

Enable DC and choose Bus shift or Master shift DC mode.

1 Click on the Device n (EtherCAT) node
2 Select the EtherCAT tab in the information panel.
3 Click on Advanced Settings which opens a new dialog.
4 In the Advanced Settings dialog, select the Distributed Clocks page.
5 By default the Automatic DC Mode Selection box is checked, which generally gets you Master

Shift DC mode. The first DC enabled slave is the reference clock and the Simulink Real-Time
execution time is shifted slightly to align execution with the reference clock.

6 Deselect the Automatic mode and you have control over which DC mode to use or to turn it off.
Next items are with Automatic deselected.

7 With DC in use deselected, no Distributed clock synchronization takes place. This results in
much quicker initialization time to get to Op state, but there is no synchronization between
slaves.

8 With DC in use selected, you have two different synchronization methods between the
Speedgoat target machine and the EtherCAT slaves.

9 Independent DC Time uses the first DC enabled slave as the reference clock and the target
machine clock is adjusted slightly to phase lock model execution to the first DC enabled slave.

10 DC Time controlled by TwinCAT Time should be read as controlled by target machine time
in Simulink Real-Time. This is bus shift mode where the target machine is the reference clock
and the slave execution times are shifted slightly to phase lock to the target machine.

11 Select both Continuous Run-Time Measuring and Sync Window Monitoring.

Now that you have chosen the DC mode to use, you can visit all of the DC enabled slaves in your
network and set them to the correct mode. This example ENI file only supports one DC enabled slave,
the EL4002.

1 Click the node Term 3 (EL4002) and select the DC tab.
2 By default, the Operation Mode is set to SM-Synchron which does not synchronize output to

DC time. Change the Operation Mode to DC-Synchron. Different slaves have different names
for the operating mode.

3 Click Advanced Settings and set the Distributed Clock options as shown.

 Generate ENI Files for EtherCAT® Devices

16-49

To export and save the EtherCAT configuration, generate the ENI file:

1 Click the node for your EtherCAT device and click the EtherCAT tab.
2 Click Export Configuration File.
3 In the Save As dialog box, enter an XML file name, such as simple_adda_eni.xml, then click

Save. This XML file is the ENI file. The ENI file and the Simulink Real-Time model that uses the
ENI file cannot have the same name. They must have different names.

4 When you close the TwinCAT project, the editable version of this configuration is saved in the
project file. You can modify the configuration by opening this project and by exporting to XML
again.

Import a Device with the Configurator

Device import is often part of the workflow for third-party (different manufacturer) devices. Use this
process to configure a device that is not present in the Beckhoff system. Numerous motors and their
drives fall under this category. Sometimes, you must configure a device that is not present in the
Beckhoff system. The TwinCAT EtherCAT master or System Manager uses the device description files
for the devices to generate the configuration in online or offline mode.

The device descriptions are contained in ESI files (EtherCAT Slave Information) in XML format. These
files can be requested from the respective manufacturer and are made available for download. An
XML file can contain several device descriptions.

16 Simulink Real-Time Examples

16-50

The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website and are stored in
the TwinCAT installation folder. The default for TwinCAT2 is C:\TwinCAT\IO\EtherCAT. The files
are read (once) when you open a new System Manager window and if they have changed since the
last time that you opened the System Manager window.

If using a TwinCAT configurator, the TwinCAT installation includes the set of Beckhoff ESI files which
were current at the time when the TwinCAT build was created. For TwinCAT 2.11, TwinCAT 3, and
later, you can update the ESI folder from the System Manager if the programming PC is connected to
the Internet (Option > Update EtherCAT Device Descriptions).

See Also

• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”
• “EtherCAT Configurator Component Mapping”

 Generate ENI Files for EtherCAT® Devices

16-51

EtherCAT® Protocol Detect Network Failure and Reset
This example shows how to use the EtherCAT Notifications block to detect a failure in the connected
network and to restart the network when the failure is corrected.

Only a disconnected Ethernet cable into the first slave is detected by this example. More complicated
failure situations can be detected if you study the pattern of notifications that result and write the
embedded MATLAB block to account for those.

Requirements

To run this example as presented, you need a Beckhoff EK1100 with EL1202, EL2202-0100, EL3102
and EL4032 slave modules. The model does not write to any process objects. Replacing the ENI file
with one appropriate to your network works as well.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the EK1100 interface module.

2 Make sure the EK1100 is supplied with a 24-volt power source.
3 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model is a beginning of a full implementation to catch network failures and reinitialize the
network once the failure is fixed. The simple state machine in the embedded MATLAB block can be
replaced with a State Flow implementation, which may be necessary for more complicated failure
detection and recovery.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder or on the MATLAB path because the file name is present without directory information.

If you want to modify this model to experiment with it, copy the example configuration file and the
model file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercat_notifyreset'));

16 Simulink Real-Time Examples

16-52

Figure 1: EtherCAT model for detecting a disconnected Ethernet cable at the first slave and
reinitializing the network once the cable is reconnected.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI File for a Different Slave Network

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is Stack4_BS_1ms.xml.

 EtherCAT® Protocol Detect Network Failure and Reset

16-53

Each ENI file is specific to the exact network setup for which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of a Beckhoff EK1100
with EL1202, EL2202-0100, EL3102 and EL4032 slave modules. If you have a different EtherCAT
drive, this example still works, but you need to create a new ENI file that uses your slave devices.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two scopes by double clicking each, the data is relayed from the target back to the
development computer and displayed there.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer data

If you run the model using the Run on Target button, the external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks also
work.

When running this model, to demonstrate the reinitialization stages, you need to disconnect and
reconnect the Ethernet cable between the target machine and the EtherCAT slave network. When you
reconnect the cable, you see the DC timing perform the same resynchronization that occurs during
the initial period.

When using Run on Target, Scope shows the DC timing error between the master code on the
target and the first DC enabled slave. Because the error is returned as nanoseconds, this graph
shows that the timing difference settles down to the order of 3-5 microseconds (3000 to 5000
nanoseconds) difference between the DC enabled slaves and the target machine running the code.
The residual scatter just reflects task scheduling variability in the target computer RTOS.

In this experimental run, the Ethernet cable was disconnected twice during the 30 second run.
Disconnection occurred at about 7 seconds, reconnection at about 12 seconds. This process repeats

16 Simulink Real-Time Examples

16-54

at about 18 seconds and 21 seconds. Each time the cable is reconnected, the timing error shows a
pulse that shows drift between target and EtherCAT network during the time the cable was
disconnected and is the expected resynchronization behavior.

Scope1 shows several logical signals with vertical offsets to show a logic analyzer like display. From
the top of the image these are:

1 Link status (yellow)
2 Working count error (blue)
3 Frame response error (red)
4 All slaves Operational (green)
5 Slave Error (purple)
6 Scanbus error (light blue)

Disconnecting the cable caused a scanbus error as seen on the light blue trace. Nothing happens
until the cable is reconnected at about 12 seconds. The link status reflects the single time step
notifications that indicate the link going away and the link coming back. On the first disconnection,
you do not see the link going away notification, but you do see the link coming back. The embedded
MATLAB block keeps a persistent variable with the link status with an initial value of 2 and changes it
depending on the notifications.

After the link comes back, there is both a slave error and frame response error before All Slaves
Operational goes down for a sample time. At that point timing resynchronization starts and you see
the damped wave showing the timing errot falling to within a few microseconds of error.

Scope2 shows more status outputs with:

1 statechange (yellow)

 EtherCAT® Protocol Detect Network Failure and Reset

16-55

2 sbdone (blue)
3 dcinsync (red)
4 statechange request (green)
5 newstate (purple)
6 current state (light blue)

When the link goes down, the stack notices that and performs a scan of devices on the bus. That is
the sbdone mark at about 7 seconds that also resulted in the sbscan error shown in Scope1. Next
when the link is restored at 12 seconds, another bus scan is performed, shown at 12 seconds in the
blue trace. The embedded MATLAB block requests a state change to PreOp (=2) shown in the green
and purple traces. Once Preop is reached, you see another state change request to go to Op (=8)
state which is the second change in green and purple. That starts resynchronization of the clocks
between the development comptuer and the target computer, which takes a few seconds until you see
dcinsync at about 14 seconds (red trace) with the transition to Op state right after.

Disconnect the cable again to repeat the whole sequence again starting at about 18 seconds.

While this example needs manual intervention to disconnect and reconnect the Ethernet cable, the
same restart can be invoked by just requesting PreOp state follwed by a request for Op state,
skipping the interaction with the link status if triggered by some other condition in the model.

If you run the model from the command line, you can use the Simulation Data Inspector to view any
signal that is marked for signal logging. Signals marked for logging appear with the dot with two arcs
above it in the model editor.

See Also

• “Modeling EtherCAT Networks”
• “EtherCAT® Protocol Sequenced Writing CoE Slave Configuration Variables” on page 16-62
• “EtherCAT® Protocol Sequenced Writing SoE Slave Configuration Variables” on page 16-57

close_system('slrt_ex_ethercat_notifyreset');

16 Simulink Real-Time Examples

16-56

EtherCAT® Protocol Sequenced Writing SoE Slave
Configuration Variables

This example shows how to use SoE blocks and a simple state machine to write configuration values
to variables that can only be written before going to EtherCAT Op state. For code needed to use the
CoE blocks for slaves that understand CoE protocol, see “EtherCAT® Protocol Sequenced Writing
CoE Slave Configuration Variables” on page 16-62.

For slaves that understand CoE addressing, restrictions on when a specific object can be written is
somewhat rare. For slaves that understand SoE addressing, this restriction is much more common.

Changing configuration objects in slave devices before starting IO to the external connections is
useful, even if modifying the values is not restricted.

This example also shows distributed clocks synchronization using the bus shift DC mode where the
slaves are shifted in time to match the execution time of the master.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Master device and at least one slave that has SoE addressed objects. The supplied ENI file is for a
Beckhoff AX5103 drive.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the AX5103 drive.

2 Make sure the AX5103 is supplied with a 24-volt power source.
3 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model illustrates how you can read or write to SoE/SSC objects if they are only writable in
EtherCAT PreOp state. You can move the SoE/SSC transfers to EtherCAT SafeOp state by changing
the Initialization end state in the EtherCAT Init block and by also changing the constant in the
Wait for this state constant block. These settings direct the state machine to start sending SoE
messages when it reaches the initialization end state.

1 Init = 1
2 PreOp = 2
3 SafeOp = 4
4 Op = 8

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder or on the MATLAB path because the file name is present without directory information.

 EtherCAT® Protocol Sequenced Writing SoE Slave Configuration Variables

16-57

If you want to modify this model to experiment with it, copy the example configuration file and the
model file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercat_asyncSoE_SSC_InOrder'));

Figure 1: EtherCAT model for sequencing through SoE/SSC commands after pausing initialization at
PreOp state

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI file for a Different SoE drive

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is BeckDrive_1ms.xml.

16 Simulink Real-Time Examples

16-58

Each ENI file is specific to the exact network setup for which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of one AX5103 drive. If
you have a different EtherCAT drive this example still works, but you need to create a new ENI file
that uses your drive.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

If you use a different drive, you need to consult the manual for your devices and find the SoE
mapping. Using that mapping, you need to change the SSC commands in the SoE commands in
order subsystem to use objects on your drive.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two scopes by double clicking each, the data is relayed from the target back to the
development computer and displayed.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks also
work.

When using Run on Target, Scope shows the DC timing error between the master code on the
target and the first DC enabled slave. Since the error is returned as nanoseconds, this graph shows
that the timing difference settles down to the order of 3-5 microseconds (3000 to 5000 nanoseconds)
difference between the DC enabled slaves and the target machine running the code. The residual
scatter just reflects task scheduling variability in the target computer RTOS.

 EtherCAT® Protocol Sequenced Writing SoE Slave Configuration Variables

16-59

Scope1 shows the progression of EtherCAT states, from idle to Init to PreOp, SafeOp and finally Op
state. SafeOp is only entered briefly and only shows up as the value 4 for a few time steps before the
switch to Op state. Since this model uses the distributed clocks mechanism, the switch to Op state
only occurs once the timing error settles down.

Scope2 shows the status outputs of the 5 async SDO blocks inside the subsystem. Each SDO block is
enabled to write for one time step. The block switches to status = 1 (busy) for a few time steps. On
successful completion status = 2 (done), the block switches for one time step. If a block encounters
an error, the block switches to status = 3 (error) for one time step. On an error, the Cycle control
embedded MATLAB code block stops the sequence and sets the error output, which stops the model.
In that case, the failing block have output an error code that is displayed on Display1. This display is
zoomed into the interval just after state went to PreOp (=2) state.

Scope4 shows several of the outputs from the Cycle control block. The first 5 are the enable signals,
made true one at a time by Cycle control. The oprequest output is true for one time step to trigger
the request to proceed to Op state. This display is zoomed in to the same interval as in Scope2.

16 Simulink Real-Time Examples

16-60

When all of the requested SSC commands are complete and the state has progressed to Op state, the
done signal is set to true for the remainder of execution. The rest of your model goes into the Op
State Model subsystem.

If you need a different number of SSC commands to execute before Op state, you need to edit the
Cycle control embedded MATLAB code block and modify the persistent array that is currently sized
to have length 10, which is larger than the number of SSC commands being requested.

If you run the model from the command line, you can use the Data Inspector, accessible from the
toolstrip, to view any signal that has been tagged to log with the Log Selected Signals selection
found by right clicking on the signal. Those are marked with the dot with two arcs above it in the
model editor.

See Also

• “EtherCAT® Protocol Sequenced Writing CoE Slave Configuration Variables” on page 16-62
• “EtherCAT® Protocol Detect Network Failure and Reset” on page 16-52
• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”

 EtherCAT® Protocol Sequenced Writing SoE Slave Configuration Variables

16-61

EtherCAT® Protocol Sequenced Writing CoE Slave
Configuration Variables

This example shows how to use CoE blocks and a simple state machine to write configuration values
to variables that can only be written before going to EtherCAT Op state. For code needed to use the
SoE blocks for slaves that understand SoE protocol, see “EtherCAT® Protocol Sequenced Writing
SoE Slave Configuration Variables” on page 16-57.

For slaves that understand CoE addressing, limited ability to read or write specific objects is
somewhat rare. For slaves that understand SoE addressing, this restriction is much more common.

This example also shows distributed clocks synchronization using the bus shift DC mode where the
slaves are shifted in time to match the execution time of the master.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
master device and at least one slave that has CoE addressed objects. The supplied ENI file is for a 5
element slave stack: EK1100+EL1202+EL2202+EL3102+EL4032.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the EL1100 interface.

2 Make sure the EK1100 is supplied with a 24-volt power source.
3 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model illustrates how you can read or write to CoE/SDO objects if they are only writable in
EtherCAT PreOp state. You can move the CoE/SDO transfers to EtherCAT SafeOp state by changing
the Initialization end state in the EtherCAT Init block and by also changing the constant in the
Wait for this state constant block. These settings direct the state machine to start sending CoE
messages when it reaches the initialization end state.

1 Init = 1
2 PreOp = 2
3 SafeOp = 4
4 Op = 8

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder.

If you want to modify this model to experiment with it, then copy the example configuration file from
the example folder to the current folder. To open the model, in the MATLAB Command Window, type:

16 Simulink Real-Time Examples

16-62

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ethercat_asyncCoE_cycle'))

Figure 1: EtherCAT model for sequencing through CoE commands after pausing initialization at
PreOp state

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

 EtherCAT® Protocol Sequenced Writing CoE Slave Configuration Variables

16-63

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI File for a Different Set of Slaves

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is Stack4_BS_1ms.xml.

Each ENI file is specific to the exact network setup from which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of an
EK1100+EL1202+EL2202+EL3102+EL4032. If you have a different set of EtherCAT slave devices
this example works, but you need to create a new ENI file that uses your devices.

For overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

If you use different slave devices, you need to consult the manual for your devices and find the CoE
mapping. Using that mapping, you need to change the SDO commands in the SDO commands in
order subsystem to use objects on your devices.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two host side scopes by double clicking each, data is relayed from the target
computer to the development computer and is displayed.

Included in the model is the ability to control the amplitude of the cycling motion. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks
also work.

When using Run on Target, the Scope block shows the DC timing error between the master code on
the target computer and the first DC enabled slave. Because the error is returned as nanoseconds,
this graph shows that the timing difference settles down to the order of 3-5 microseconds (3000 to
5000 nanoseconds) difference between the DC enabled slaves and the target machine running the
code. The residual scatter reflects task scheduling variability in the target computer RTOS.

16 Simulink Real-Time Examples

16-64

Scope1 shows the progression of EtherCAT states, from idle to Init to PreOp, SafeOp and finally Op
state. SafeOp is only entered briefly and only shows up as the value 4 for a few time steps before the
switch to Op state. Since this model uses the distributed clocks mechanism, the switch to Op state
only occurs once the timing error settles down.

Scope2 shows the status outputs of the 5 async SDO blocks inside the subsystem. Each SDO block is
enabled to write for one time step, then switches to status = 1 (busy) for a few time steps, then on
successful completion status = 2 (done) for one time step. If a block encounters an error, status = 3
(error) for one time step. On an error, the Cycle control embedded Matlab code block stops the
sequence and sets the error output which stops the model. In that case, the failing block has output
an error code that is displayed on Display1. This display is zoomed into the interval just after state
went to PreOp (=2) state.

Scope3 shows several of the outputs from the Cycle control block. The first 5 are the enable signals,
made true one at a time by Cycle control. Then the oprequest output is true for one time step to
trigger the request to proceed to Op state. This display is zoomed in to the same interval as in
Scope2.

 EtherCAT® Protocol Sequenced Writing CoE Slave Configuration Variables

16-65

When the requested SDO commands are complete and the state has progressed to Op state, the done
signal is set to true for the remainder of execution. The rest of your model goes into the Op State
Model subsystem.

If you need a different number of SDO commands to execute before Op state, you need to edit the
Cycle control embedded MATLAB code block and modify the persistent array that is currently sized
to have length 5, the same as the number of SDO commands being requesting.

If you run the model from the command line, you can use the Simulation Data Inspector to view any
signal that has been marked for signal logging. Signals marked for signal logging have a dot with two
arcs above it in the model editor.

See Also

• “EtherCAT® Protocol Sequenced Writing SoE Slave Configuration Variables” on page 16-57
• “EtherCAT® Protocol Detect Network Failure and Reset” on page 16-52
• “Modeling EtherCAT Networks”
• “Configure EtherCAT Network by Using TwinCAT 3”

16 Simulink Real-Time Examples

16-66

Simple ASCII Encoding/Decoding Loopback Test (With
Baseboard Blocks)

This example model shows how a single floating point number can be converted to ASCII and
transmitted over a serial link. The sending serial port and receiving serial port can be in the same
system or in different systems.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbaseboardsimpleascii'));

See Also

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

 Simple ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)

16-67

ASCII Encoding/Decoding Loopback Test
This model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along with some
extraneous data to show how the FIFO Read HDRS block can remain synchronized to the valid byte
stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as strings to
the cell array in the block parameters dialog box. The messages must share the same termination
string. In this example, it is a carriage return followed by a line feed: "\r\n".

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialasciitest'))
set_param('slrt_ex_serialasciitest','StopTime','30');
sim('slrt_ex_serialasciitest')

See Also

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

16 Simulink Real-Time Examples

16-68

ASCII Encoding/Decoding Loopback Test (With Baseboard
Blocks)

This example model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along with some
extraneous data to show how the FIFO Read HDRS block can remain synchronized to the valid byte
stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as strings to
the cell array in the block parameters dialog box. The messages must share the same termination
string. In this example, it is a carriage return followed by a line feed: "\r\n".

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port and legacy serial port 2).
You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbaseboardasciitest'))

See Also

 ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)

16-69

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

16 Simulink Real-Time Examples

16-70

ASCII Encoding/Decoding Resync Loopback Test
This example model shows the ability of the FIFO Read HDRS block to resynchronize after being
repeatedly disabled and its the ability to resolve errors such as when a message is only partially
complete at the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive sample
times. This mimics a worst case scenario where the model updates before the message construction
is complete. As a result, sometimes only part of the message is received. The second pulse generator
alternately enables and disables the FIFO Read HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse Generator1
block outputs a 0, the count from the FIFO Read HDRS block is 0. When it outputs a 1, the read
catches up by throwing away extra data and returns the last complete value found in the FIFO. Scope
2 indicates when new data is present.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialasciisplit'))
set_param('slrt_ex_serialasciisplit','StopTime','30');
sim('slrt_ex_serialasciisplit')

See Also

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

 ASCII Encoding/Decoding Resync Loopback Test

16-71

ASCII Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks)

This model shows the ability of the FIFO Read HDRS block to resynchronize after being repeatedly
disabled as well as the ability to resolve errors such as when a message is only partially complete at
the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive sample
times. This mimics a worst case scenario where the model updates before the message construction
is complete. As a result, sometimes only part of the message is received. The second pulse generator
alternately enables and disables the FIFO Read HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse Generator1
block outputs a 0, the count from the FIFO Read HDRS block is 0. When it outputs a 1, the read
catches up by throwing away extra data and returns the last complete value found in the FIFO. Scope
2 indicates when new data is present.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbaseboardasciisplit'));

16 Simulink Real-Time Examples

16-72

See Also

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

 ASCII Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)

16-73

Binary Encoding/Decoding Loopback Test
This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two messages
along with other elements:

• The first byte, 8, is a count of the remaining number of bytes in the stream.
• The second byte, 5, is an extraneous value (EV).
• [170,1,N] is message 1 (M1).
• [170,2,44,M] is message 2 (M2).
• N and M are numbers between 0 and 255 that are incrementing and decrementing, respectively.

Even though the data stream includes extraneous bytes (5 in this case), the FIFO Read BINARY block
can handle and ignore this extra information. Scope 1 displays the received message 1 data. Scope 2
displays the received message 2 data.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbinarytest'));

See Also

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

16 Simulink Real-Time Examples

16-74

Binary Encoding/Decoding Loopback Test (With Baseboard
Blocks)

This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two messages
along with other elements.

• The first byte, 8, is a count of the remaining number of bytes in the stream.
• The second byte, 5, is an extraneous value (EV).
• [170,1,N] is message 1 (M1).
• [170,2,44,M] is message 2 (M2).
• N and M are numbers between 0 and 255 that are incrementing and decrementing, respectively.

Notice that when the data contains extraneous bytes (5 in this case) the FIFO Read BINARY block can
handle and ignore this extra information.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data. Scope 3
shows the transmitted byte stream. The gain block on the signal to Scope 3 makes the elements of
the vector non-virtual so the scope can see them.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbaseboardbinarytest'));

See Also

 Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)

16-75

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

16 Simulink Real-Time Examples

16-76

Binary Encoding/Decoding Resync Loopback Test
This model shows the ability of the FIFO Read BINARY block to handle messages that are interrupted
and only partially complete. This is a worst case example where every message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send only parts of
messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-character headers.
If it finds [170,1] it outputs [3,170,1,N] on port 1. If it finds [170,2], it outputs
[4,170,2,44,M] to port 2. N and M are numbers between 0 and 255 that are incremenenting and
decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will output 0. The
outputs are padded to the maximum vector size specified in the FIFO Read BINARY block. In this
example output vectors are 6 in width. The count in the first element tells how many elements are
significant.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbinarysplit'));

See Also

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

 Binary Encoding/Decoding Resync Loopback Test

16-77

Binary Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks)

This model shows the ability of the FIFO Read BINARY block to handle messages that are interrupted
and only partially complete. This is a worst case example where every message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send only parts of
messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-character headers.
If it finds [170,1] it outputs [3,170,1,N] on port 1. If it finds [170,2], it outputs
[4,170,2,44,M] to port 2. N and M are numbers between 0 and 255 that are incrementing and
decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will output 0. The
outputs are padded to the maximum vector size specified in the FIFO Read BINARY block. In this
example output vectors are 1024 in width. The count in the first element tells how many elements are
significant. The Demux blocks discard the uninteresting parts of the signal.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_serialbaseboardbinarysplit'));

See Also

16 Simulink Real-Time Examples

16-78

• “RS-232 Serial Communication”
• “RS-232 Legacy Drivers”

 Binary Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)

16-79

Target to Development Computer Communication by Using TCP
This example shows how to use TCP blocks to send data from the target computer to MATLAB
running on the development computer. This example uses a target computer located at IP address
192.168.7.5.

The TCP Send block in the server real-time application slrt_ex_target_to_host_TCP sends data
from the target computer to the TCP/IP object that is created in MATLAB on the development
computer. The MATLAB m-script sends the received data back to the real-time application.

To open this example, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ta
rget_to_host_TCP'))

Open, Build, and Download Server Application

Open the model.

model = 'slrt_ex_target_to_host_TCP';
mdlOpen = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(model, systems))
 mdlOpen = 1;
 open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));
end

Build Model and Download to Target Computer

set_param(model, 'RTWVerbose', 'off');
set_param(model, 'StopTime','10');
targetIP = '192.168.7.5';
set_param([model,'/TCP Server'],'serverAddress',targetIP);
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);

16 Simulink Real-Time Examples

16-80

Close the model.

if (mdlOpen)
 bdclose(model);
end

Create TCP/IP Object in MATLAB on Development Computer

Create a TCP/IP object and connect the TCP/IP object to the development computer.

t = tcpclient(targetIP,5027);

Run Real-Time Application on Target Computer

start(tg);
pause(3);

Read Data Packets and Send Back to Target Computer

Read from the target computer and write back.

tic
while (toc<5)
 data = read(t,16);
 write(t,data);
end

Stop Real-Time Application on Target Computer

stop(tg);

Close TCP/IP Object on Development Computer

clear t;

View Signal Received on Target Computer

Simulink.sdi.view();

 Target to Development Computer Communication by Using TCP

16-81

16 Simulink Real-Time Examples

16-82

Target to Host Transmission by Using UDP
This example shows how to use UDP blocks to send data from a target computer to a development
computer. This example uses a target computer located at IP address 192.168.7.5 and uses a
development computer located at IP address 192.168.7.2.

The transmit real-time application slrt_ex_target_to_host_UDP runs on the target computer and
send signal data to the UDP object that the script creates in MATLAB on the development computer.

When using the UDP protocol for communicating data to or from the target computer, consider these
issues:

• The Simulink model on the development computer runs as fast as it can. The model run speed is
not synchronized to a real-time clock.

• UDP is a connectionless protocol that does not check to confirm that packets were transmitted.
Data packets can be lost or dropped.

• On the target computer, UDP blocks run in a background task that executes each time step after
the real-time task completes. If the block cannot run or complete the background task before the
next time step, data may not be communicated.

• UDP data packets are transmitted over the Ethernet link between the development and target
computers. These transmissions share bandwidth with the Ethernet link.

For more information about UDP and Simulink Real-Time, see “UDP Communication Setup”.

Open Model, Build, and Load Real-Time Application

This model drives a first order transfer function with a square wave signal and sends the transfer
function input and output signals to the development computer using UDP. To open the model, in the
MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_ta
rget_to_host_UDP'));

model = 'slrt_ex_target_to_host_UDP';
mdlOpened = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(model, systems))
 mdlOpened = 1;
 open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));
end

 Target to Host Transmission by Using UDP

16-83

Build the model and download to the target computer.

• Configure for a non-Verbose build.
• Mark the Byte Unpacking block output for data logging.
• Build and download application.
• Open the Simulation Data Inspector.

This code shows how to mark signals programmatically for data logging. You can also mark signals
for data logging in the Simulink Editor. You can view the logged data in in the Simulation Data
Inspector.

set_param(model,'RTWVerbose','off');
set_param(model,'StopTime','10');
targetIP = '192.168.7.5';
set_param([model,'/UDP Receive'],'ipAddress',targetIP);
hostIP = '192.168.7.2';
set_param([model,'/UDP Send'],'toAddress',hostIP)
set_param([model,'/UDP Receive'],'fmAddress',hostIP)
handle = get_param([model,'/Byte Unpacking '],'PortHandles');
Outport = handle.Outport(1);
Simulink.sdi.markSignalForStreaming(Outport,'on');
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);

Close the model if it is opened.

16 Simulink Real-Time Examples

16-84

if (mdlOpened)
 bdclose(model);
end

Create UDP object in MATLAB on Development Computer

uByte = udpport("IPV4","LocalHost",hostIP,"LocalPort",8002);

Run Model on Target Computer

start(tg);

Read Data and Write Development Computer

tic;
while (toc<10)
 data = read(uByte,16);
 write(uByte,data,targetIP,25000);
 data = read(uByte,16);
end

View Signals in Simulation Data Inspector

Simulink.sdi.view;

 Target to Host Transmission by Using UDP

16-85

Disconnect UDP Object on Development Computer

clear uByte;

16 Simulink Real-Time Examples

16-86

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive
Blocks

This example shows how to use Ethernet blocks to send and receive Ethernet packets on a target
computer.

On the development computer, a UDP Send block sends a sample packet. On the target computer, this
packet is received by an Ethernet Receive block, individual bytes in the payload are manipulated, and
the resulting payload is sent out of the target computer by an Ethernet Send block.

The Ethernet blocks work only on the target computer.

These blocks can work in the default signal input/output mode and a message input/output mode.
Both modes are shown in this example.

Set Up Ethernet Send-Receive Model

Open the target model slrt_ex_ethernetSendReceive.

mdl1 = 'slrt_ex_ethernetSendReceive';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',mdl1));

The target model requires a valid Interface Name parameter value in the two Receive blocks and
the two Send blocks. You can obtain this information on the target computer by using the QNX
Neutrino RTOS ifconfig command.

This example uses interface name wm0 for the target IP address '192.168.7.5'.

Enter the interface name wm0 into the four blocks in the model:

targetIface = 'wm0';
set_param('slrt_ex_ethernetSendReceive/Ethernet Receive', 'InterfaceName', targetIface)

 Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

16-87

set_param('slrt_ex_ethernetSendReceive/Ethernet Receive1', 'InterfaceName', targetIface)
set_param('slrt_ex_ethernetSendReceive/Ethernet Send', 'InterfaceName', targetIface)
set_param('slrt_ex_ethernetSendReceive/Ethernet Send1', 'InterfaceName', targetIface)

Operations in the Ethernet Send-Receive Real-Time Application

Every packet sent from the development computer to the target computer is received by each
Ethernet Receive block on the target.

The two Receive and corresponding Send blocks demonstrate the operation in signal mode and
message mode, where Simulink messages represent the packets.

In signal mode, 'slrt_ex_ethernetSendReceive/Subsystem ' uses Simulink blocks to add a 802.1Q
VLAN tag 32 and send it back to the host at a port incremented by 1. If the original sender port was
8001, the loopback destination port is 8002.

In the messages mode, slrt_ex_ethernetSendReceive/MATLAB System Object receives the
packets. For each packet it then creates three new packets with the VLAN tags 24, 25, and 26.

Manipulating the Ethernet Header

For details about Ethernet header structure, refer to the standards document for IEEE 802.1Q.

For details about the IPv4 header, refer to RFC 791 for Internet Protocol https://
datatracker.ietf.org/doc/html/rfc791

These changes to the header occur in the Subsytem and the System object:

1 Switch source and destination MAC address: Swap bytes 1-6 with bytes 7-12.
2 Switch source and destination IP Address: Swap bytes 27-30 with bytes 31-34.
3 Switch source and destination port numbers: Swap bytes 35-36 with bytes 37-38.
4 Increment the new destination port number by 1: Add 1 to the value of byte 38.
5 Disable checksum verification: Set bytes 41-42 to 0. Without this change, the packets that are

sent back to the development computer would be discarded, since checksum value would be
incorrect. For details on checksum verification including recalculating new checksums, refer to
RFC: 791 for Internet Protocol.

6 Add 802.1Q VLAN tag: IEEE 802.1Q adds a 4-byte VLAN tag between the Source/Destination
MAC address and Length/Type fields of an Ethernet frame to identify the VLAN to which the
frame belongs.

For the VLAN tags:

1 Make space for the VLAN tag by shifting bytes 13 onward to the right by 4 to the byte location
starting at 17.

2 Insert the VLAN tag at byte locations 13-16. For example, to add tag 24, insert 0x81 0x00 0x00
0x18. Here the first 2 bytes correspond to a Tag protocol identifier (TPID), which is a 16-bit field
set to a value of 0x8100 to identify the frame as an IEEE 802.1Q-tagged frame. The other 2 bytes
set the Tag control information (TCI) to 0x0018, which includes the VLAN Identifier that
corresponds to 24.

Open and Set Up Packet Source Model on Development Computer

Open model slrt_ex_udpsend. Set the IP address.

16 Simulink Real-Time Examples

16-88

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791

developmentIP = '192.168.7.2';
mdl2 = 'slrt_ex_udpsend';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',mdl2));
set_param('slrt_ex_udpsend/UDP Receive1', 'ipAddress', developmentIP)

This model uses UDP blocks to send one packet out when the execution time is 2 seconds.

Set the To IP address parameter on slrt_ex_udpsend/SendPacketSubsystem/UDP Send to
the IP address of the target computer.

targetIP = '192.168.7.5';
set_param('slrt_ex_udpsend/SendPacketSubsystem/UDP Send', 'toAddress', targetIP)

Run Ethernet Send-Receive Real-Time Application on Target Computer

Run the target model on the target using the Run on Target button. Or, in the MATLAB Command
Window, type:

evalc('slbuild(mdl1)');
tg = slrealtime;
load(tg,mdl1)
start(tg)

Simulate the UDP Send Model on the Development Computer

Simulate the model.

 Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

16-89

set_param('slrt_ex_udpsend', 'SimulationCommand', 'start')

Open Simulink Data Inspector

Open the Simulation Data Inspector and observe the new packets created on the target computer. In
the MATLAB Command Window, type:

Simulink.sdi.view;

The Simulation Data Inspector shows that four packets are received by the UDP Receive block
through four instances of the data length changing to five (the UDP packet size).

Every simulation sends out just one packet at time = 2 seconds.

16 Simulink Real-Time Examples

16-90

The Ethernet send-receive real-time application responds with four packets, which contain the same
payload but with VLAN tags 24, 25, 26, and 32.

Windows does not expose the VLAN tags to applications. Due to this using a packet capture program
such as Wireshark does not show VLAN tags.

The development computer model shows four UDP packets were received. These are UDP blocks, and
Ethernet header information is not output.

For Windows systems that have connections that block the VLAN tag (such as VM Ethernet
connections or a network interface between the development and target computers), these
connections may prevent the packets from appearing on the output display.

One way to see the tags is by using QNX Neutrino RTOS tcpdump command on the target computer
while logged in as user root by using password root. Use the command:

tcpdump -i <targetIface> -v -e vlan

For targetIface, use the interface name wm0 from the Set Up Ethernet Send-Receive Model
section.

Close Models

bdclose('all');

 Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

16-91

Apply Simulink Real-Time Model Template to Create Real-Time
Application

This example shows how to use the Simulink Real-Time template to create a Simulink model. Starting
from the model template provides a new model that has configuration parameters set up for building
a real-time application.

To see the Simulink Real-Time commands for each operation in this example, view the example code.

Create Simulink Model from Template

To create a Simulink model from the Simulink start page, in the MATLAB Command Window, type:

simulink

Select the Simulink Real-Time template from the start page and create the exampleSlrealtimeApp
model. Or, in the Command Window, use the Simulink.createFromTemplate command. See code
for this script for full syntax.

Blocks, Connections, and Data Logging in the Model

The Simulink Real-Time model template contains a Gain block that connects a Signal Generator to a
Scope block. The Gain block output is marked for logging with the Simulation Data Inspector (SDI).

Simulate Real-Time Application and View Logged Data

Build the real-time application, run it on the target computer, and view the logged data:

1. Make sure that the development computer has a connection to the target computer.

2. Build the model and download the real-time application to the target computer. On the Real-Time
tab, click Run on Target. Or, use the slbuild command and the load command.

3. Run the real-time application and log data by using the Run on Target button.

4. Open the Simulation Data Inspector by double-clicking the Simulation Data Inspector icon on the
Gain block output signal or by using the Simulink.sdi.view command.

More Information

• “Create and Run Real-Time Application from Simulink Model”
• “Configure and Control Real-Time Application by Using Simulink Real-Time Explorer”
• Simulation Data Inspector

16 Simulink Real-Time Examples

16-92

Insert Event into Execution Profiling Stream
This example shows how to use the Log Event block inserts a user-defined event into the execution
profiling event stream. For more information about execution profiling, see “Execution Profiling for
Real-Time Applications” on page 10-7.

Open Model

To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_lo
g_event'));

mdl = 'slrt_ex_log_event';
mdlOpened = 0;
systems = find_system('type', 'block_diagram');
if ~any(strcmp(mdl, systems))
 mdlOpened = 1;
 open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',mdl));
end

Set Parameters for Measure Funtion Execution Times

Open the Configuration Parameters dialog box. Select Code Generation > Verification.

For Measure function execution times, select Detailed (all function call sites). The Measure
task execution time check box is checked and locked. Click OK.

Or, in the MATLAB command window, type:

set_param('slrt_ex_log_event','CodeProfilingInstrumentation','Detailed');
set_param('slrt_ex_log_event','StopTime','30');

Build and Load Real-Time Application

Build the model and download to the target computer.

evalc('slbuild(mdl)');
tg = slrealtime;
load(tg,mdl);

 Insert Event into Execution Profiling Stream

16-93

Profile Execution

Start the profiler and then execute the real-time application.

startProfiler(tg);
start(tg);
pause(20)
stopProfiler(tg);
stop(tg);

Display Execution Profile

Retrieve the Profiler data. Display the user-defined event in a table.

profiler_data = getProfilerData(tg);
profiler_data.EventTrace.etData

Processing data on target computer ...
Transferring data from target computer ...
Processing data on host computer ...

ans =

 2×6 table

 Channel Timestamp Event Value CPU ModelTime
 _______ ________________ _____ _____ ___ _________

 500 4391936693513734 200 200 1 2
 1000 4391936693513734 100 700 1 6.5

The Execution Profile plot shows the allocation of execution cycles across the four processors,
indicated by the colored horizontal bars. The model sections are listed in the Code Execution Profiling
Report. The cores are indicated by the numbers underneath the bars.

Close Model

Close the model if it is opened.

if (mdlOpened)
 bdclose(mdl);
end

16 Simulink Real-Time Examples

16-94

Control Real-Time Application by Using C# Code
This example shows how to develop a C# program that controls a Simulink Real-Time application by
using the functions from the Simulink Real-Time XIL API support package. The C# example code
shows how to use the XIL C# API calls to load, run, and stop a Simulink Real-Time application. The
example code also shows how to record signal data.

Prepare for API in C# Program

1. Install the Simulink Real-Time XIL API support package by using the Add On Explorer.

2. Copy model slrt_ex_pendulum_100Hz to your working folder.

open_system(fullfile(matlabroot,'toolbox/slrealtime/examples/slrt_ex_pendulum_100Hz.slx'));

3. Build model slrt_ex_pendulum_100Hz.

model = 'slrt_ex_pendulum_100Hz';
evalc('slbuild(model)');

4. Create an XIL configuration file.

slrealtime.createPortConfigureFile("configFile.xml","192.168.7.5",'slrt_ex_pe
ndulum_100Hz');

 Control Real-Time Application by Using C# Code

16-95

Create C# Program

1. Open Visual Studio 2019 and create a project for Console App (.NET core).

2. As project references in visual studio, add ASAM.XIL.Implementation.Testbench.dll,
ASAM.XIL.interfaces.dll, and MathWorks.ASAM.XIL.Server.dll. These files are available
after you install the support package.

Find ASAM.XIL.Implementation.Testbench.dll and ASAM.XIL.Interfaces.dll in folder
C:\Program Files (x86)\ASAM e.V\ASAM AE XIL API Standard Assemblies 2.1.0\bin.

Find MathWorks.ASAM.XIL.Server.dll in folder C:\ProgramData\MATLAB\SupportPackages
\<release>\toolbox\slrealtime\xil\src\bin\win64.

3. Copy the example C# program myRealTimeAppController.cs content to your current Visual
Studio project. Update the project.

To find file myRealTimeAppController.cs, open this example and view the example folder.

4. Build the solution in your Visual Studio project.

Run the C# Program

1. Run your application at the operating system command prompt. Enter:

appName configFilePath csvFilePath

The parts of this command are:

• Application name
• Full file path to your configuration file
• Full file path of a CSV file in which the solution is saved

When you run the application, it loads and runs the Simulink Real-Time application
slrt_ex_pendulum_100Hz.mldatx on the target computer. While running, the signal data for the
signals slrt_ex_pendulum_100Hz/Pendulum:1 and slrt_ex_pendulum_100Hz:2 are recorded
for about 3 seconds. The data is saved into the CSV file that you selected. When done, the application
stops on the target computer.

2. Check signal data saved in the CSV file.

16 Simulink Real-Time Examples

16-96

Run Real-Time Application by Using Python Script
This example shows how to call Simulink Real-Time functions from a Python® script to build a real-
time application from a model, load and run the application, tune parameter values, and capture
signal data.

Set Up MATLAB Session for Python

To set up your MATLAB session for this example:

1. Open MATLAB and install the MATLAB engine for Python. For more information, see Calling
MATLAB from Python.

2. Convert the MATLAB session into a shared session. In the Command Window, type
matlab.engine.shareEngine. For more information, see matlab.engine.shareEngine.

Set Up Files and Run Python Script

To set up files and run the Python script:

1. Copy model matlbaroot/toolbox/slrealtime/examples/slrt_ex_pendulum_100Hz.slx
to a working folder.

2. Copy Python script CallingSlrealtimeFromPython.py to the same working folder.

3. Open an operating system Command Prompt window and make the working folder the current
folder for this window.

4. To run the Python script, at the command prompt, type:

py CallingSlrealtimeFromPython.py -m [.slx file path] -t [target name]

5. The Python script builds the model, runs the real-time application, and generates a plot of the
captured signal data for cart position.

 Run Real-Time Application by Using Python Script

16-97

https://www.mathworks.com/help/matlab/matlab-engine-for-python.html
https://www.mathworks.com/help/matlab/matlab-engine-for-python.html
https://www.mathworks.com/help/matlab/ref/matlab.engine.shareengine.html

Line-by-Line Description of Python Script

The Python script uses the Simulink Real-Time function API to run the real-time application and
capture the signal data.

Observe these points in the script:

• To call MATLAB commands from Python, import the matlab.engine module.

import matlab.engine

• Class modelManagement handles open and load of the Simulink model, then it builds the model.

class modelManagement():

• Class targetManagement is responsible for handling interactions with the slrealtime.Target
object in MATLAB. For example, this class loads the application, starts the application, stops the
application, gets and sets parameter values, and captures signal data.

class targetManagement():

• In the main function, the function tries to find all the active, shared MATLAB sessions and
connects to the first one. If there is no session, the function opens a new MATLAB session.

engs = matlab.engine.find_matlab()
if not engs:

16 Simulink Real-Time Examples

16-98

 eng = matlab.engine.start_matlab()
else:
 eng = matlab.engine.connect_matlab(engs[0])

• In the main function, the function instantiates a modelManagement object and builds the model.

mm = modelManagement(eng, modelFilePath)
appPath = mm.buildModel()

• In the main function, the function instantiates a targetManagement object for the given target
name.

tg = targetManagement(eng, targetName)

• In the main function, the function loads the application on the target computer.

tg.load(appPath)

• In the main function, the function creates a slrealtime.Instrument object in MATLAB, adds a
signal for cart position to the instrument object, adds this instrument object to the target object,
and enables the BufferData mode. The live-streamed signal is saved in memory and waits for
retrieval.

blockPaths = ['slrt_ex_pendulum_100Hz/Pendulum']
portNumbers = [1]
tg.captureSignals(appPath, blockPaths, portNumbers)

• In the main function, the function starts to run the application on the target computer.

tg.start()

• In the main function, the function waits for 5 seconds, then sets the Wave Control block parameter
Value to 2. This setting causes the cart to move in a sinusoidal pattern. The value is read again to
make sure that the parameter value has been successfully updated.

tg.setparam('slrt_ex_pendulum_100Hz/Wave Control','Value',2)
newValue = tg.getparam('slrt_ex_pendulum_100Hz/Wave Control','Value')
assert newValue == 2

• In the main function, the function waits for 15 seconds and stops the application.

time.sleep(15)
tg.stop()

• In the main function, the function retrieves the signal data and transfers the data back to Python.

[t, data] = tg.getCapturedSignals('slrt_ex_pendulum_100Hz/Pendulum',1)

• In the main function, the function removes the previously added instrument object from the target
object, leaving the target object in a clean state.

tg.removeInstrument()

• In the main function, the function plots the captured signal data against the time. In the resulting
plot, you can see that the cart position is stabilized at 5 around 5 seconds, and then the cart starts
to move in a sinusoidal pattern as expected after 5 seconds.

plt.plot(t, data)
plt.xlabel('Time(s)')

 Run Real-Time Application by Using Python Script

16-99

plt.ylabel('Cart Position')
plt.show()

16 Simulink Real-Time Examples

16-100

Hello World! Example External Code Integration for Simulink
Real-Time

This example shows how to use an S-Function Builder block for external code integration. The
example adds a hello message to the system log.

Before running this example, install the Simulink Real-Time Target Support Package. The support
package includes the tools that compile the code that runs on the target computer.

Open the Model

Use the Open Model button to open the slrt_ex_helloworld_sfunbuilder model.

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_helloworld_sfunbuilder'));

Open the S-Function Block

Double-click the helloworld-sfun S-Function block. The S-Function Builder opens and displays the
S-function code.

/* Includes_BEGIN */
#ifdef SIMULINK_REAL_TIME
#include "slrt_log.hpp"
#endif
/* Includes_END */

/* Externs_BEGIN */
/* extern double func(double a); */
/* Externs_END */

void helloworld_sfun_Start_wrapper(SimStruct *S)
{
/* Start_BEGIN */

/* Start_END */
}

void helloworld_sfun_Outputs_wrapper(const real_T *u0,
 real_T *y0,
 SimStruct *S)
{
/* Output_BEGIN */

 Hello World! Example External Code Integration for Simulink Real-Time

16-101

// Create custom message
static char hellomsg[100];
sprintf(hellomsg,"Hello World! t=%f \n",*u0);
// Use macros for platform dependent code
#ifdef SIMULINK_REAL_TIME
slrealtime::log_info(hellomsg);
#else
ssPrintf(hellomsg);
#endif

// Generic platform independent code
*y0 = *u0;
/* Output_END */
}

void helloworld_sfun_Terminate_wrapper(SimStruct *S)
{
/* Terminate_BEGIN */
/*
 * Custom Terminate code goes here.
 */
/* Terminate_END */
}

Build Model and Run Real-Time Application

Before building the model, you can run the model on your desktop and view the output message in
the Simulink Real-Time system log viewer.

When you are ready to build the model, on the Simulink Editor Real-Time tab, connect to the target
computer and click Run on Target. Or, in the MATLAB Command Window, type:

tg = slrealtime;
connect(tg);
model = 'slrt_ex_helloworld_sfunbuilder';
evalc('slbuild(model)');
load(tg,model);
start(tg);
pause(20);
stop(tg);

View Message in Status Log

Open the target computer status log and view the Hello World! message. On the Simulink Editor
Real-Time tab, select Prepare > SLRT Explorer. Then, select the System Log Viewer tab. Or, in
the MATLAB Command Window, type:

slrtLogViewer;

The viewer shows the Hello World! messages in the system log.

16 Simulink Real-Time Examples

16-102

Close All Files

bdclose('all');

 Hello World! Example External Code Integration for Simulink Real-Time

16-103

Control Color of Lamp on Instrument Panel
This example shows how to control the color of a lamp indicator on an instrument panel that connects
to a Simulink Real-Time application.

The example operations are:

• Create uifigure, add lamps, and add labels
• Open model and build real-time application
• Connect lamps and add instrument
• Observe color cycle of lamps
• Remove instrument
• Close model

Create uifigure and Add Components

f = uifigure;
lamp1 = uilamp(f);
lamp1.Position = [10 300 20 20];
tlabel1 = uilabel(f);
tlabel1.Position = [40 298 100 22];
tlabel1.Text = 'Lamp 1';
lamp2 = uilamp(f);
lamp2.Position = [10 200 20 20];
tlabel2 = uilabel(f);
tlabel2.Position = [40 198 100 22];
tlabel2.Text = 'Lamp 2';

16 Simulink Real-Time Examples

16-104

Build and Run Real-Time Application

open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_lamp_instrument'));
model = 'slrt_ex_lamp_instrument';
evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);
start(tg);
pause(2);
inst = slrealtime.Instrument;
inst.connectScalar(lamp1, 'lamp1', 'Property', 'Color', 'Callback', @setLampColor);
inst.connectScalar(lamp2, 'lamp2', 'Property', 'Color');
addInstrument(tg,inst);
pause(10);
stop(tg);
removeInstrument(tg,inst);
bdclose('all');

function color = setLampColor(~,d)
 switch uint8(d)
 case 5
 color = 'green';
 case 4
 color = 'yellow';
 case 3
 color = 'cyan';
 case 2

 Control Color of Lamp on Instrument Panel

16-105

 color = 'magenta';
 case 1
 color = 'red';
 otherwise
 color = 'white';
 end
end

16 Simulink Real-Time Examples

16-106

Configure Input and Output Ports for Bit Packing and
Unpacking

This example shows how to configure Bit Packing blocks and Bit Unpacking blocks.

Open Model

The model uses Bit Packing, Bit Unpacking, and Display blocks to show how to use the input and
output port configuration syntax. Open the model and double-click blocks to view the configuration.

model = 'slrt_ex_bit_pack_unpack';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

Settings for Bit Packing and Bit Unpacking Blocks

To demonstrate the syntax for configuring block input and output ports, the model
slrt_ex_bit_pack_unpack has a set of Bit Packing blocks and Bit Unpacking blocks that use these
settings:

 Configure Input and Output Ports for Bit Packing and Unpacking

16-107

slrt_ex_bit_pack_unpack/Bit Packing

• Bit patterns: {[0]}
• Output port (packed) data type: uint32
• Outpupt port (packed) dimensions: [1]

slrt_ex_bit_pack_unpack/Bit Packing1

• Bit patterns: {[1]}
• Output port (packed) data type: uint32
• Outpupt port (packed) dimensions: [1]

slrt_ex_bit_pack_unpack/Bit Packing2

• Bit patterns: {[16:18]}
• Output port (packed) data type: uint32
• Outpupt port (packed) dimensions: [1]

slrt_ex_bit_pack_unpack/Bit Packing3

• Bit patterns: {0, 1, [16:18]}
• Output port (packed) data type: uint32
• Outpupt port (packed) dimensions: [1]

slrt_ex_bit_pack_unpack/Bit Packing4

• Bit patterns: {[32:34]}
• Output port (packed) data type: uint32
• Outpupt port (packed) dimensions: [2]

slrt_ex_bit_pack_unpack/Bit Unpacking

• Bit patterns: {0, 1, [16:18]}
• Input port (packed) data type: uint32
• Inpupt port (packed) dimensions: [1]
• Ouptut port (unpacked) data types (cell array): {'uint8','uint16', 'uint32'}
• Output port (unpacked) dimensions (cell array): {1,1,1}
• Sign extended: 'On'

slrt_ex_bit_pack_unpack/Bit Unacking1

• Bit patterns: {[32:34]}
• Input port (packed) data type: uint32
• Inpupt port (packed) dimensions: [2]
• Ouptut port (unpacked) data types (cell array): {'uint8'}
• Output port (unpacked) dimensions (cell array): {1}
• Sign extended: 'On'

16 Simulink Real-Time Examples

16-108

Build Model and Run Real-Time Application

To show the unpacked output in the Display blocks, build the model and run the real-time application.

evalc('slbuild(model)');
tg = slrealtime;
load(tg,model);
start(tg);
pause(10);
stop(tg);

Close Model

bdclose('all');

 Configure Input and Output Ports for Bit Packing and Unpacking

16-109

Run Real-Time Simulation of Permanent Magnet Synchronous
Motor

This example shows how to run a real-time simulation of a permanent magnet synchronous motor
(PMSM) that is externally controlled at high switching frequency. The real-time application runs on a
Speedgoat target computer that has an IO334 I/O module installed. To open the models in this
example and build the real-time application requires these products:

• MATLAB
• Simulink
• Simulink Coder
• Simulink Real-Time
• Simulink Real-Time Target Support Package
• Speedgoat I/O Blockset
• Speedgoat HDL Coder Integration Package
• Speedgoat IO334-325K I/O module with IO334-21 plugin

HDL Coder is required for design customizations.

You can use the Simulink Real-Time model and its corresponding bitstream file to simulate a
permanent magnet synchronous motor system that is externally controlled in closed-loop at high
switching frequency (100kHz) with sufficiently small time step (50 nanoseconds).

Simulink Model for Permanent Magnet Synchronous Motor System

The permanent Magnet synchronous motor system model is a physical system in Simulink. The
system consists of three components, an inverter block, a permanent magnet synchronous motor
block, and an incremental encoder block. The HDL-compatible Simulink implementation of the
subcycle-averaging inverter block reads the PWM duty-cycle from "Gates" inport and DC voltage
input from "V_plus" and "V_minus", and outputs the phase voltages from outport "Vll_abc". You can
set its fault flag from Fault_Word port.

The permanent magnet synchronous motor block is an HDL Coder compatible implementation of a
three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back
electromotive force. It takes the input phase voltage from the subcycle-averaging inverter block and
outputs shaft angular velocity, shaft angular position, three phase currents, and motor torque. This
block can also take an external speed or torque as input.

The Simulink implementation of quadrature encoder converts the angular position of the motor shaft
to digital pulses. To see more details, open the model:

model = 'slrt_ex_pmsm';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

16 Simulink Real-Time Examples

16-110

set_param(model, 'SimulationCommand', 'Update');
PMSM = [model '/Motor and Inverter HDL Wrapper/Motor and Inverter Mathmatical Models'];
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',PMSM));

 Run Real-Time Simulation of Permanent Magnet Synchronous Motor

16-111

This model verifies the three-phase output currents and encoder's digital signals resulting from the
input torque signal. To see how the model works, simulate the model.

sim(model);
open_system([model '/Scope1']);

16 Simulink Real-Time Examples

16-112

Real-Time Simulation

This example also provides the corresponding Simulink Real-Time interface model and the bitstream
generated by using the HDL Workflow Advisor, which you can download to a Speedgoat FPGA I/O
334-21 target.

model_gm = 'slrt_ex_pmsm_gm';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model_gm));

 Run Real-Time Simulation of Permanent Magnet Synchronous Motor

16-113

1. Reconfigure the parameters for PMSM system to your values from the PMSM configuration block
mask.

2. Make sure that the development computer has a connection to the target computer.

3. Make sure that the bitstream file is in your working folder, build the model, and download the real-
time application to the target computer. On the Real-Time tab, click Run on Target. Or, use the
slbuild command and the load command.

4. Run the real-time application by using the Run on Target button.

5. Open the Simulation Data Inspector by double-clicking the Simulation Data Inspector icon or by
using the Simulink.sdi.view command.

16 Simulink Real-Time Examples

16-114

More Information

The FPGA bitstream file MotorAndInverterHDLWrapper_2109071220.mcs is available in the
Simulink Real-Time examples folder.

cd(fullfile(matlabroot,'toolbox','slrealtime','examples'))

Close All Open Files

bdclose all;

 Run Real-Time Simulation of Permanent Magnet Synchronous Motor

16-115

Apply Persistent Variables in Real-Time Applications
This example shows how to apply persistent variables in real-time applications.

In a model, you save variables on target computer whose values persist when the real-time
application stops and even when the target computer is shut down by using Persistent Variable
Write blocks. At real-time application start, you direct the real-time application to read these
persistent variables by using Persistent Variable Read blocks.

In MATLAB®, you can get or set the values of persistent variables on the target computer by using
the getPersistentVariables function and the setPersistentVariables function.

Examine Persistent Variables in the Model

The model slrt_ex_persist computes the final position by using information from the speed input
and initial position input. The Persistent Variable Read block variable position provides the
initial value for the first run of the application from variable default value when the variable
position does not exist on target computer. When the application stops, the Persistent Variable
Write block variable position stores the final position from the run. The real-time application uses
this value as the initial position for the next run.

To open the model and examine the Persistent Variable block values, in the Command Window, type:

model = 'slrt_ex_persist';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',model));

Build and Load the Real-Time Application

To build and load the real-time application, in the Command Window, type:

tg = slrealtime;
connect(tg);
evalc('slbuild(model)');
load(tg,model);

16 Simulink Real-Time Examples

16-116

Initial Value of Persistent Variable

The initial value of the persistent variable position when it does not exist on target computer is 0.

The value is set by the Default value parameter of the Persistent Variable Read block.

Observe How Persistent Variable Changes in First Run

To run the real-time application, in the Command Window, type:

start(tg);

Check the value of the persistent variable after the stop time expires and the real-time application
stops.

pause(5);
myPersistVars = getPersistentVariables(tg)

myPersistVars =

 struct with fields:

 position: 20

Observe How Persistent Variable Changes in Second Run

To run the real-time application, in the Command Window, type:

load(tg,model);
start(tg);

Check the value of the persistent variable after the stop time expires and the real-time application
stops.

pause(5);
myPersistVars = getPersistentVariables(tg)

myPersistVars =

 struct with fields:

 position: 40

Clear the Persistent Variable Values

Because the persistent variable values remain on the target computer after the real-time application
stops, you must clear the retained values if the retained values are not needed. These steps show a
way to clear the position persistent variable values.

myNewPersistVars = rmfield(myPersistVars,'position');
setPersistentVariables(tg,myNewPersistVars);
myPersistVars = getPersistentVariables(tg)

myPersistVars =

 Apply Persistent Variables in Real-Time Applications

16-117

 []

You can also remove all persistent variable values by using this command.

setPersistentVariables(tg, []);

Preserve Persistent Variable Data by Safe Shutdown of Target Computer

The previous steps demonstrate how Persistent Variable values are stored when the real-time
application stops and are reloaded when the real-time application starts. These variables are also
retained when the target computer is shut down.

Target computers can handle being shut down by turning off power to the computer, but using this
approach is not the best practice for the target computer. Also, if you just turn off the target
computer while the real-time application is running, you can lose the last few seconds of data for the
Persistent Variables.

To preserve all persistent variable data and safely shut down the target computer:

1. On the target computer, stop the real-time application (for example, stop(tg)). The values for
persistent variables are stored.

2. Open a system terminal window.

3. On the development computer, for user slrt and target computer IP address 192.168.7.5, type
command: ssh slrt@192.168.7.5

4. Complete the login with password: slrt

5. At the target computer system prompt that appears in the terminal window, shut down the target
computer by using QNX Neutrino command: shutdown -S system

6. After the shutdown command runs, you can safely turn off power to the target computer.

For more shutdown command info, see shutdown in the QNX Neutrino documentation.

Close All Files

bdclose('all');

16 Simulink Real-Time Examples

16-118

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/s/shutdown.html

Troubleshooting

Solutions have been worked out for some common errors and problems that can occur when you are
using Simulink Real-Time software. For more information, see “Find Simulink Real-Time Support” on
page 17-35.

• “Troubleshooting Basics” on page 17-2
• “Troubleshoot Missing Real-Time Tab” on page 17-4
• “Troubleshoot Communication Failure Through Firewall (Windows)” on page 17-5
• “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-13
• “Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional

Signals” on page 17-15
• “Troubleshoot Signal Data Logging from Inport in Referenced Model” on page 17-17
• “Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness”

on page 17-19
• “Troubleshoot Signal Data Logging from Send and Receive Blocks” on page 17-21
• “Troubleshoot Signals for Streaming or File Logging” on page 17-22
• “Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds”

on page 17-23
• “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-24
• “Troubleshoot Build Error for Accelerator Mode” on page 17-26
• “Troubleshoot Long Build Times for Real-Time Application” on page 17-27
• “Troubleshoot Working with Persistent Variables” on page 17-29
• “Troubleshoot Unsatisfactory Real-Time Performance” on page 17-30
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-32
• “Troubleshoot Gaps in Streamed Data” on page 17-34
• “Find Simulink Real-Time Support” on page 17-35
• “Install Simulink Real-Time Software Updates” on page 17-36

17

Troubleshooting Basics
For questions or issues about your installation of the Simulink Real-Time product, refer to these
guidelines and tips.

For more specific troubleshooting solutions, go to the MathWorks® Support website MathWorks Help
Center website. The troubleshooting suggestions address these areas:

• Troubleshooting System Configuration

• “Troubleshoot Communication Failure Through Firewall (Windows)” on page 17-5
• “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-13
• “Troubleshoot Vector CANape Operation” on page 4-13
• “Troubleshoot ETAS Inca Operation” on page 4-17“Troubleshoot System Upgrade for R2020b”

• Troubleshooting Model Preparation

• “Troubleshoot Missing Real-Time Tab” on page 17-4
• “Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds” on page

17-23
• “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-24
• “Troubleshoot Build Error for Accelerator Mode” on page 17-26
• “Troubleshoot Long Build Times for Real-Time Application” on page 17-27
• “Troubleshoot Working with Persistent Variables” on page 17-29
• “Troubleshoot Model Upgrade for R2020b”
• “Troubleshoot S-Function Build Upgrade for R2020b”

• Troubleshooting Control and Instrumentation

• “Troubleshoot Parameters Not Accessible by Name” on page 7-71
• “Troubleshoot Signals Not Accessible by Name” on page 7-69
• “Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional

Signals” on page 17-15
• “Troubleshoot Signal Data Logging from Inport in Referenced Model” on page 17-17
• “Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness” on page

17-19
• “Troubleshoot Signal Data Logging from Send and Receive Blocks” on page 17-21
• “Troubleshoot Signals for Streaming or File Logging” on page 17-22

• Troubleshooting Performance Optimization

• “Troubleshoot Unsatisfactory Real-Time Performance” on page 17-30
• “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-32
• “Troubleshoot Gaps in Streamed Data” on page 17-34
• “Troubleshoot System Upgrade for R2020b”
• “Troubleshoot Model Upgrade for R2020b”
• “Troubleshoot MATLAB API Call Upgrade for R2020b”

17 Troubleshooting

17-2

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

• More Troubleshooting: Simulink Real-Time Support

• “Find Simulink Real-Time Support” on page 17-35
• “Install Simulink Real-Time Software Updates” on page 17-36

 Troubleshooting Basics

17-3

Troubleshoot Missing Real-Time Tab
Where is the Real-Time tab? I do not see this tab in the Simulink editor.

What This Issue Means
From the model configuration, the Simulink editor determines which tabs to display. The editor
displays the Real-Time tab for models that are configured for Simulink Real-Time.

Try This Workaround
To configure your model for Simulink Real-Time, in Simulink Editor, from the Apps tab, click
Simulink Real-Time.

This operation changes the code generation target to slrealtime.tlc for the model. After
changing the configuration, the Simulink editor displays the Real-Time tab for the model.

See Also

More About
• “Create and Run Real-Time Application from Simulink Model”

17 Troubleshooting

17-4

Troubleshoot Communication Failure Through Firewall
(Windows)

When I attempt to connect to the target computer by using Simulink Real-Time Explorer, I see this
error message.

Error: Cannot connect to target 'TargetPC1': Cannot connect to target.

Even though the connection fails, clicking on the Update button or Reboot button in Simulink Real-
Time Explorer works. These operations indicate that the target computer can be reached through the
Ethernet port.

What This Issue Means
In R2020b and later releases, Simulink Real-Time uses a protocol for the development-to-target
computer connection that is blocked by default in Window Defender Firewall for networks classified
as Public. Windows also classifies all Ethernet connections as Public by default.

If you do not select the correct options when first running MATLAB, it is can be possible to ping,
update, and reboot the target computer from MATLAB. But, these incorrect option selections prevent

 Troubleshoot Communication Failure Through Firewall (Windows)

17-5

communication connection to the target computer. This communication connection is necessary to
load and run real-time applications on the target computer.

Try These Workarounds
Resolve this issue by allowing MATLAB to communicate on all types of networks. Apply this setting
when prompted on first connection or apply this setting later through the Windows Defender Firewall
Allow an app through Windows Firewall selection. If that is not possible due to privilege
restrictions, the issue can also be resolved by changing the classification of the Ethernet interface
used for development-to-target computer connection from Public to Private.

Allow MATLAB for Public and Private Networks by Using Prompt

When you first try to connect to a target computer, Windows Defender Firewall prompts you to allow
MATLAB to communicate on Private and Public networks. Make sure that both Private and Public
options are selected. Only one is selected by default.

Click Allow access.

17 Troubleshooting

17-6

Manually Allow MATLAB for Public and Private Networks

From the Windows Start menu, search Allow an app through Windows Firewall.

Click the Allow an app through Windows Firewall option.

Scroll down in the Allowed apps and features list and find the MATLAB release that you are using.

If both Private and Public check boxes are selected, see “Configure Development-to-Target
Computer Ethernet Interface as Private” on page 17-9.

 Troubleshoot Communication Failure Through Firewall (Windows)

17-7

Click the Change settings button and confirm the security dialog. Make sure that the Private and
Public boxes are selected. A Domain option or others may be available, but these options are not
relevant for the MATLAB network access configuration.

17 Troubleshooting

17-8

Configure Development-to-Target Computer Ethernet Interface as Private

You can use the Windows UI or PowerShell command window to configure development-to-target
computer Ethernet interface as private.

Windows UI Method

The Windows UI method is straightforward, but may not be available depending on your system
configuration. If not, use the PowerShell Command Window Method.

1 Right-click on the Wi-Fi or Ethernet network icon in the lower right corner of the Windows
taskbar (next to the clock).

2 Select Open Network & Internet settings.
3 Under the Ethernet section, click Properties.
4 Select the radio button for Private.

PowerShell Command Window Method

 Troubleshoot Communication Failure Through Firewall (Windows)

17-9

1 Right-click on the Windows Start menu and click the Windows PowerShell (Admin) selection.
2 Run the command Get-NetConnectionProfile.
3 Find the name of the Ethernet interface that you are using for development-to-target computer

communication.
4 Enter the command Set-NetConnectionProfile.
5 Use the interface name that you find as the Name argument.
6 Confirm the changes by running Get-NetConnectionProfile.

For example, if the interface is named Unidentified network, enter the command:

Set-NetConnectionProfile -Name "Unidentified network" -NetworkCategory "Private"

17 Troubleshooting

17-10

Confirm Successful Configuration

To confirm successful configuration, in Simulink Real-Time Explorer or in the Simulink Editor on the
Real-Time tab, click the Disconnected button. Confirm that the button label changes to Connected.

If the label does not change to Connected, the connection problem persists. Contact a systems
administrator for further assistance. Administrator credentials may be required to configure the
Windows Defender Firewall, or there may be another firewall on the development computer that

 Troubleshoot Communication Failure Through Firewall (Windows)

17-11

requires configuration. A systems administrator may need to allow communications on specific ports
or add more specific firewall rules.

See Also

More About
• “Enable Development Computer Communication (Windows)”

External Websites
• MathWorks Help Center website
• What ports does a Simulink Real-Time target use to communicate with the host?
• How do I configure Windows Firewall for Simulink Real-Time (SLRT)?

17 Troubleshooting

17-12

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/678393-what-ports-does-a-simulink-real-time-target-use-to-communicate-with-the-host
https://www.mathworks.com/matlabcentral/answers/396086-how-do-i-configure-windows-firewall-for-simulink-real-time-slrt

Troubleshoot Cannot Load Shared Object on Target Computer
When I load and run on the target computer a real-time application that depends on a shared object
(.so), the real-time application cannot run and load the library. In the system log, I see a message
like this error:

ldd:FATAL: Could not load library xyz.so

What This Issue Means
An error loading a shared object can indicate some issue with missing or corrupt library
dependencies on the target computer. The issue could be:

• The download to the target computer has modified or has removed some required files on the
target computer.

• The download to the target computer put the library in a location that is not accessible when the
real-time application runs.

Try This Workaround
These workarounds explore the possible issues.

Check for Issues with Required Files

To check for this issue, connect to the target computer, and then try to build, load, and run example
model slrt_ex_osc. If working with the default target computer, in the MATLAB Command Window,
type:

tg = slrealtime;
connect(tg);
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_osc'));
slbuild('slrt_ex_osc');
load('slrt_ex_osc');
start('slrt_ex_osc');

If you can successfully connect to the target computer and build, load, and run the real-time
application, there is no issue with files from the Simulink Real-Time Target Support Package on the
target computer.

If you cannot complete those operations successfully, update the target computer software by using
the force option. If working with the default target computer, in the MATLAB Command Window,
type:

update(tg,'force',true);

After the software update, connect to the target computer and try to build, load, and run the real-time
application..

Check Location of Shared Object on Target Computer

To check for this issue, use SSH or FTP to examine the location of the shared object file on the target
computer. For more information, see “Execute Target Computer RTOS Commands at Target Computer
Command Line” on page 9-3.

 Troubleshoot Cannot Load Shared Object on Target Computer

17-13

After you build the real-time application that links to a shared object, you must install the real-time
application and the shared object on the target computer. Put the shared objects in a location on the
target computer where they can be found and loaded at run time. The recommended locations are /
lib, /usr/lib, or /usr/local/lib. Root access is required to copy or modify files in these
locations.

See Also
update | slrealtime.getSupportInfo

More About
• “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-24
• “Execute Target Computer RTOS Commands at Target Computer Command Line” on page 9-3
• “External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models” on

page 11-2

17 Troubleshooting

17-14

Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-
Point, and Multidimensional Signals

My models sometimes use signals in nonvirtual buses, signals with fixed-point data types, and
mutidimensional signals that have a number of dimensions greater than two. I want to view signal
data from these signals in the Simulation Data Inspector. I do not see data for these signals when I
select them in Simulink Real-Time Explorer for streaming to the Simulation Data Inspector.

What This Issue Means
There are some guidelines to data logging signals in nonvirtual buses, signals with fixed-point data
types, and mutidimensional signals that have a number of dimensions greater than two:

• When these signals are marked for logging with the Simulation Data Inspector, the signal data
displays in the Simulation Data Inspector.

• When these signals are connected to File Log blocks, the signal data displays in the Simulation
Data Inspector.

• When these signals are selected for dynamic streaming with an instrument object—either by
selecting the signals in Simulink Real-Time Explorer or adding the signals by using the
Application object API, the signal data does not display in the Simulation Data Inspector or in
App Designer instrument panel applications.

Try This Workaround
There are workarounds to get signals in nonvirtual buses, signals with fixed-point data types, and
mutidimensional signals (that have a number of dimensions greater than two) to display in the
Simulation Data Inspector.

Signals in Nonvirtual Buses

To get signals in nonvirtual buses to display in the Simulation Data Inspector, mark the signals for
data logging in the model or connect the signals to File Log blocks.

To instrument signals in nonvirtual buses to stream to an Instrument object, use the BusElement
argument in the addSignal, connectLine, or connectScalar methods.

Signals with Fixed-Point Data Types

To get signals with fixed-point data types to display in the Simulation Data Inspector, mark the signals
for data logging in the model or connect the signals to File Log blocks.

Multidimensional Signal

To get signals in mutidimensional signals (that have a number of dimensions greater than two) to
display in the Simulation Data Inspector, mark the signals for data logging in the model or connect
the signals to File Log blocks.

See Also
Bus Creator | fixdt | addSignal | connectLine | connectScalar

 Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional Signals

17-15

Related Examples
• “Parameter Tuning and Data Logging” on page 16-2

More About
• “Create Nonvirtual Buses Within a Component”
• “Fixed-Point Data in MATLAB and Simulink”
• “Signal Basics”
• “Variable-Size Signal Basics”

17 Troubleshooting

17-16

Troubleshoot Signal Data Logging from Inport in Referenced
Model

My model contains referenced models. The referenced models have root-inport signals that would be
helpful to log and stream to the Simulation Data Inspector for visualization. When I mark these
signals in the model for logging, I see this warning in the diagnostic viewer when I build the model:

Warning: Streaming to the SDI is not available for signal at
<sldiag objui="outport" objparam="1" objname="{'A/B',
'B/b1'}">output port 1</sldiag> of block '{'A/B', 'B/b1'}'.
Add a SignalCopy block at that port and instrument the
SignalCopy output port.

What This Issue Means
The warning message reports that the root-inport signals of referenced models are not available for
streaming. Within top model A, the referenced model root inports that generate this warning message
appear in referenced model A/B and referenced model A/B/C.

Top Model A

 Troubleshoot Signal Data Logging from Inport in Referenced Model

17-17

Referenced Model A/B

Referenced Model A/B/C

Try This Workaround
To instrument a root-inport signal in a referenced model and stream the signal to the Simulation Data
Inspector, you can connect the signal to a Signal Conversion block that you configure as a Signal
Copy block. Mark the output of the Signal Copy block for logging to the Simulation Data Inspector.

See Also

Related Examples
• “Trace or Log Data with the Simulation Data Inspector” on page 7-21

More About
• “Signal Logging Basics” on page 7-26

17 Troubleshooting

17-18

Troubleshoot Signal Data Logging from Inport in Referenced
Model in Test Harness

I created a Simulink Test test harness for my Simulink Real-Time model. The model has a referenced
model that contains an inport whose signal I have marked for data logging in the Simulation Data
Inspector. During testing, I see this error:

Warning: Streaming to the SDI is not available for signal at
<sldiag objui="outport" objparam="1"
objname="{'Example_Harness1/Example', 'Example/Input'}">output
port 1</sldiag> of block '{'Example_Harness1/Example',
'Example/Input'}'. Add a SignalCopy block at that port and
instrument the SignalCopy output port.

What This Issue Means
It is not possible to stream signal data from the referenced model inport for logging from within the
test harness.

Try This Workaround
Mark the input signals to the model block for logging. This model provides an example workaround.
For more information, see the Simulink Test documentation.

 Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness

17-19

See Also

Related Examples
• “Test Real-Time Application in Simulink Test” on page 15-2

17 Troubleshooting

17-20

Troubleshoot Signal Data Logging from Send and Receive
Blocks

My model uses Send and Receive blocks. I want to view signal data from the message line (output of
send or input of receive) in the Simulation Data Inspector. I see unexpected data when I select a
message line in Simulink Real-Time Explorer for streaming to the Simulation Data Inspector.

What This Issue Means
There are some guidelines to data logging message line signals:

• Message line signals that are marked for logging with the Simulation Data Inspector display the
data accurately in the Simulation Data Inspector.

• Message line signals that are connected to File Log blocks display the data accurately in the
Simulation Data Inspector.

• Message line signals that are selected for dynamic streaming with an instrument object—either by
selecting the signals in Simulink Real-Time Explorer or adding the signals by using the
Application object API—do not display the data accurately in the Simulation Data Inspector or
in App Designer instrument panel applications.

For more information about message lines, see “Animate and Understand Sending and Receiving
Messages”.

Try This Workaround
To get accurate display of message line signals in the Simulation Data Inspector, mark the signals for
data logging in the model or connect the signals to File Log blocks.

See Also
File Log

Related Examples
• “Animate and Understand Sending and Receiving Messages”

More About
• “Data Logging with Simulation Data Inspector (SDI)” on page 7-14

 Troubleshoot Signal Data Logging from Send and Receive Blocks

17-21

Troubleshoot Signals for Streaming or File Logging
There are signals selected for streaming or connected to File Log blocks in my model that generate
an error that starts with:

Cannot stream signal signal_name.

What This Issue Means
This error message for signals selected for streaming or connected to File Log blocks could indicate
that the signal has one or more of these issues:

• The signal is not available in application.
• The signal does not use globally accessible memory in application.
• The signal connects to a Send/MessageSend block.
• The signal has inherited sample time.
• The signal is discontiguous.

Try These Workarounds
The workarounds for these issues vary. Try these.

Workaround for Signal Not Available

Make sure that these signal types are not being monitored, traced, or logged by name in the real-time
application:

• Virtual or bus signals (including signals from bus creator blocks and virtual blocks)
• Signals that Simulink optimizes away
• Signals of complex or multiword data types
• Blocks without alphanumeric names

Workaround for Signal Not Global Available or Discontiguous Signal

To resolve, try inserting a Signal Copy block (a Signal Conversion block in Signal Copy mode) into the
signals that you want to stream. Log the copied signal output instead. If you use a Dashboard block,
connect it to the output signal of the Signal Copy block.

Workaround for Signal Connected to Message Block

To resolve, try streaming or file logging the input signal to the Send/MessageSend block. The output
of the block (a message) cannot be streamed or logged.

Workaround for Signal Has Inherited Sample Time

To resolve, change the signal sample time from inherited to a value. Signals with inherited sample
time cannot be streamed or logged.

17 Troubleshooting

17-22

Troubleshoot Folder Names with Spaces or Special Characters
Halt Model Builds

When a space character appears the file path, my Simulink Real-Time model build reports an error:

Simulink Real-Time model build cannot use a file path with spaces for model build directory.

When a special character, such as an open parenthesis character "(", appears in the file path, my
model build reports an error:

Error(s) encountered while building "xxxx"

What This Issue Means
For the Simulink Real-Time model build … message or for the Error(s) encountered
while building … message, message indicates that a space character or special character appears
in the file path. The QNX Neutrino toolchain for the code generation target is not compatible with file
paths that contain spaces or special characters, the model build halts and does not output a real-time
application.

Try This Workaround
Try these workaround options to resolve the model build errors.

Create a Build Folder

Create a folder name that does not have spaces or special characters in it. Build your model in that
folder.

Map the Build Folder

Map the folder name or path that has spaces or special characters in it to a folder name or path
without spaces or special characters. Build your model in the mapped folder.

See Also

More About
• “Build Process Support for Folder Names”

 Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds

17-23

Troubleshoot Model Links to Static Libraries or Shared Objects
Some model build and runtime issues occur when I link my real-time application to static libraries
(.a) or shared objects (.so).

What This Issue Means
When building or running real-time a application that links to static link libraries (.a) or shared
object libraries (.so), there are some considerations that help you use libraries that are compatible
with the QNX Neutrino RTOS on the target computer. These recommendations are helpful when
troubleshooting library usage, including:

• A link to a library from QNX Neutrino RTOS that is available in the Simulink Real-Time target
support package

• A shared object that is included in the model through an FMU block
• A custom static library or shared object that is linked to the real-time application

Try This Workaround
These workarounds explore the possible issues.

Link to Accessible Libraries or Objects

When you link to a static library or shared object, the library or object must be:

• Compatible with the QNX Neutrino RTOS
• Accessible to the toolchain at build time

Check to ensure that you have followed the guidelines for library compatibility. See “External Code
Integration of Libraries and C/C++ Code with Simulink Real-Time Models” on page 11-2. Check that
the toolchain can access the library at build time. Remember that the QNX Neutrino cannot process
spaces in the path to files.

Install Shared Objects on Target Computer

After you build the real-time application that links to a shared object, install both the real-time
application and the shared object on the target computer. Copy the shared objects to a location on the
target computer where they can be found and loaded at runtime. The recommended locations are /
lib, /usr/lib, or /usr/local/lib. Root access is required to copy files to these locations.

Rebuild Real-Time Application When Rebuilding Static Libraries

Because linked static libraries are included in the real-time application, when you modify and rebuild
a static library, you rebuild any real-time applications that include that library. After rebuilding the
static library and the real-time application, reinstall the real-time application on the target computer.

See Also
FMU

17 Troubleshooting

17-24

More About
• “Build Support for S-Functions”
• “Compile Source Code for Functional Mock-up Units” on page 3-3
• “External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models” on

page 11-2
• “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-13

External Websites
• MathWorks Help Center website

 Troubleshoot Model Links to Static Libraries or Shared Objects

17-25

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Build Error for Accelerator Mode
I get a build error when building a model in accelerator mode or rapid accelerator mode when the
model contains Simulink Real-Time blocks (for example, model blocks that represent hardware).

What This Issue Means
Simulink Real-Time does not support accelerator mode or rapid accelerator mode simulation of
models with blocks that represent hardware. For example, if you open the
slrt_ex_serialasciitest model, change the Simulink mode to rapid accelerator, and run the
model, Simulink displays this error:

Unable to build a standalone executable to simulate the model
'slrt_ex_serialasciitest' in rapid accelerator mode.

This error occurs because accelerator mode and rapid accelerator mode produce compiled code that
runs on the development computer, not on the Simulink Real-Time target computer. Any blocks that
access hardware report a build error if you compile the model by using accelerator mode or rapid
accelerator mode.

Try This Workaround
Change the simulation mode to normal mode or external mode.

See Also

More About
• “How Acceleration Modes Work”
• “Simulink Real-Time Options Pane”

External Websites
• MathWorks Help Center website

17 Troubleshooting

17-26

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Long Build Times for Real-Time Application
The model build process for my Simscape Multibody™ models is slow and uses an unexpected
amount of memory.

What This Issue Means
The default QNX Neutrino compiler switches for Simulink Real-Time apply optimizations that lead to
long build times or slow builds for some complex models, such as Simscape Multibody models.

Try This Workaround
To improve the real-time application build speed, change the compiler switch selections from the
default selections by adding the -fdisable-rtl-sched2 switch for the C/C++ compiler:

1 Open your Simulink Real-Time model.
2 In the Simulink Editor, from the Real-Time tab, select Hardware Settings.
3 Select Code Generation > Build configuration > Specify
4 Click the C Compiler options and add option -fdisable-rtl-sched2.
5 Click the C++ Compiler options and add option -fdisable-rtl-sched2.
6 Click Apply and OK.

After updating the compiler options, the options appear as shown.

If you prefer to use a programmatic approach to update these compiler switches, you could use this
code.

% add a compiler flag '-fdisable-rtl-sched2'

set_param(modelName, 'BuildConfiguration', 'Specify');
options = get_param(modelName, 'CustomToolchainOptions');
ccompiler_idx = find(strcmp(options, 'C Compiler'));
cppcompiler_idx = find(strcmp(options, 'C++ Compiler'));

 Troubleshoot Long Build Times for Real-Time Application

17-27

options{ccompiler_idx+1} = ...
 [options{ccompiler_idx+1} ' -fdisable-rtl-sched2'];
options{cppcompiler_idx+1} = ...
 [options{cppcompiler_idx+1} ' -fdisable-rtl-sched2'];
set_param(modelName, 'CustomToolchainOptions', options);

See Also

External Websites
• QNX Momentics IDE 7.1 User’s Guide
• QNX Momentics IDE 7.1 User’s Guide, Utilities Reference

17 Troubleshooting

17-28

https://www.qnx.com/developers/docs/7.1/index_frames.html
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/about.html

Troubleshoot Working with Persistent Variables
When I run the getPersistentVariables function or setPersistentVariables function, I see
this error:

Cannot parse the file that stores persistent variables from
target computer. To clear the issue, delete all persistent
variables on target computer. For more information, see
Troubleshoot Working with Persistent Variables.

What This Issue Means
This error message indicates that the file on the target computer that stores the persistent variable
values is corrupted or unreadable.

Try This Workaround
To resolve this issue, clear the persistent variable values that are stored on the target computer.

1 On the development computer, create a Target object tg and connect to the target computer.

tg = slrealtime;
connect(tg);

2 Use the setPersistentVariables function to clear the persistent variable values that are
stored on the target computer.

setPersistentVariables(tg,[]);

See Also
getPersistentVariables | setPersistentVariables | Persistent Variable Read | Persistent
Variable Write

Related Examples
• “Apply Persistent Variables in Real-Time Applications” on page 16-116

 Troubleshoot Working with Persistent Variables

17-29

Troubleshoot Unsatisfactory Real-Time Performance
I want some recommended methods to improve unsatisfactory real-time application performance.

What This Issue Means
Run-time performance and reduce the task execution time (TET) of a model depend on model design,
target computer capacity, and target computer utilization.

Try This Workaround
You can improve run-time performance and reduce the task execution time (TET) of a model with
these methods.

Enable Compile with GCC -ffast-math Option

The Compile with GCC -ffast-math option enables the GCC compiler -ffast-math option when
compiling real-time application code. This option is disabled by default for Simulink Real-Time
models.

By enabling the Compile with GCC -ffast-math option, you provide the compiler with more
flexibility to optimize floating-point math at the expense of deviating from the IEEE-754 floating-point
standard.

For more information about the -ffast-math option, see the Semantics of Floating-Point Math in
GCC and .gcc.gnu.org/wiki/FloatingPointMath/

Run Performance Tools

Use these performance tools:

• To profile execution of a real-time application , use the startProfiler command.
• To run the profiler and plot the results, use the plot function.

For more information, see “Execution Profiling for Real-Time Applications” on page 10-7.

Use a Multicore Target Computer

You can improve run-time performance by configuring your model to take advantage of your
multicore target computer:

1 Partition the model into subsystems according to the physical requirements of the system that
you are modeling. Set the block sample rates within each subsystem to the slowest rate that
meets the physical requirements of the system.

2 In the Configuration Parameters dialog box, on the Solver pane, select the check box for Treat
each discrete rate as a separate task.

3 Click Configure Tasks, and then select the Enable explicit model partitioning for
concurrent behavior check box.

4 Create tasks and triggers, and then explicitly assign subsystem partitions to the tasks. See
“Partition Your Model Using Explicit Partitioning” and “Multicore Programming with Simulink”.

5 Run the real-time application.

17 Troubleshooting

17-30

https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/

Note Do not use MATLAB System blocks in the top level of Simulink Real-Time models in which task
execution is explicitly partitioned. These blocks generate a TLC error when building the real-time
application, for example:

"Unable to find TLCBlockSID within the Block scope"

Minimize the Model

You can improve run-time performance by minimizing your model to make more memory and CPU
cycles available for the real-time application:

1 On the Solver pane, increase Fixed-step size (fundamental sample time). Executing with a
short sample time can overload the CPU.

2 Use polling mode. See “Execution Modes” on page 8-2.
3 Reduce the number of I/O channels in the model.

Contact Technical Support

For additional guidance, refer to these sources:

• MathWorks Tech Support: MathWorks Help Center website
• MATLAB Answers: www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
• MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support: www.speedgoat.com/knowledge-
center.

See Also
Compile with GCC -ffast-math

Related Examples
• “Concurrent Execution on Simulink® Real-Time™” on page 16-11

More About
• “Execution Profiling for Real-Time Applications” on page 10-7
• “Partition Your Model Using Explicit Partitioning”
• “Execution Modes” on page 8-2
• “Find Simulink Real-Time Support” on page 17-35
• “Multicore Programming with Simulink”

External Websites
• MathWorks Help Center website
• www.speedgoat.com/products-services
• www.speedgoat.com/knowledge-center
• gcc.gnu.org/wiki/FloatingPointMath/

 Troubleshoot Unsatisfactory Real-Time Performance

17-31

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/
https://www.speedgoat.com/knowledge-center
https://www.speedgoat.com/knowledge-center
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.speedgoat.com/products-services
https://www.speedgoat.com/knowledge-center
https://gcc.gnu.org/wiki/FloatingPointMath/

Troubleshoot Overloaded CPU from Executing Real-Time
Application

Some issue is producing a CPU overload when executing a real-time application.

What This Issue Means
A CPU overload indicates that the CPU is unable to complete processing a model time step before
restarting for the next time step.

When this error occurs, the Simulink Real-Time RTOS halts model execution and the Target object
property TargetStatus shows an error, for example:

mCPUOverload: Sub-rate exception: Overload limit (0) exceeded in 0.02s rate with 1 overloads

If you allow the overload, model execution continues until the allowed overload limit is reached. If the
model continues to run after a CPU overload, the time step lasts as long as the time required to finish
the execution. This behavior delays the next time step.

Model design or target computer resources cause CPU overloads. Possible reasons are:

• The target computer is too slow or the model sample time is too small.
• The model is too complex (algorithmic complexity).
• I/O latency, where each I/O channel used introduces latency into the system. I/O latency can cause

the execution time to exceed the model time step.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

Try This Workaround
The Simulink Real-Time RTOS usually halts model execution when it encounters a CPU overload. You
can configure the Simulink Real-Time model to allow CPU overloads. Use this capability to support
long initializations and for overload diagnosis. You also can try to reduce overloads by improving
application performance and enabling the Compile with GCC -ffast-math option.

Permit Long Initialization Time

For some real-time applications, normal initialization can extend beyond the first sample time. Use
the SLRT Overload Options block to increase the number of startup time steps to ignore overloads. By
default, only the first time step ignores overloads.

Note Allowing the target computer CPU to overload can cause incorrect results, especially for
multirate models. Use the SLRT Overload Options block only for diagnosis. When your diagnosis is
complete, turn off these options.

Enable Compile with GCC -ffast-math Option

The Compile with GCC -ffast-math option enables the GCC compiler -ffast-math option when
compiling real-time application code. This option is disabled by default for Simulink Real-Time
models.

17 Troubleshooting

17-32

https://www.speedgoat.com/help

By enabling the Compile with GCC -ffast-math option, you provide the compiler with more
flexibility to optimize floating-point math at the expense of deviating from the IEEE-754 floating-point
standard.

For more information about the -ffast-math option, see the Semantics of Floating-Point Math in
GCC and .gcc.gnu.org/wiki/FloatingPointMath/

See Also
Compile with GCC -ffast-math

Related Examples
• “Monitor CPU Overload Rate” on page 10-3

More About
• “CPU Overload” on page 10-2

External Websites
• MathWorks Help Center website

 Troubleshoot Overloaded CPU from Executing Real-Time Application

17-33

https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Gaps in Streamed Data
A real-time application is producing a live streaming overload while attempting to stream signal data
at a high rate.

What This Issue Means
Live streaming from a real-time application does not guarantee all the data appears in the Simulation
Data Inspector. Live stream instrumentation runs at a lower priority than the real-time application.
So, data sent by live streaming could be dropped if the host-target connection cannot keep up.

If a live stream overload occurs, you could see noticeable gaps in the data in the Simulation Data
Inspector or see that some timesteps are lost when you export data from the Simulation Data
Inspector.

Try This Workaround
The issue is caused by high data rates and live streaming of data.

To workaround the issue:

• Modify the real-time application to decrease the data rate for live streaming data. To do this, you
could increase the sample rate, instrument fewer signals, or increase the decimation of
instrumented signals.

• Change the real-time application to use file logging instead of live streaming. File logging is
capable of logging higher data rates without dropping data.

See Also

Related Examples
• “Parameter Tuning and Data Logging” on page 16-2

More About
• “Trace or Log Data with the Simulation Data Inspector” on page 7-21

External Websites
• MathWorks Help Center website

17 Troubleshooting

17-34

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Find Simulink Real-Time Support
For support with Speedgoat target machines or the Speedgoat I/O Blockset, contact Speedgoat
support:

www.speedgoat.com/knowledge-center

For support on general MATLAB or Simulink issues, see MathWorks Support:

www.mathworks.com/support

For support on Simulink Real-Time issues, see:

• Simulink Real-Time Support:

MathWorks Help Center website
• Simulink Real-Time Answers:

www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

www.mathworks.com/matlabcentral/answers/?term=xPC+Target
• Simulink Real-Time Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time

www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

After searching these resources, if you still cannot solve your issue:

• For online or phone support, contact MathWorks technical support directly.

 Find Simulink Real-Time Support

17-35

https://www.speedgoat.com/knowledge-center
https://www.mathworks.com/support.html
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=xPC+Target
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

Install Simulink Real-Time Software Updates
The general procedure for updating Simulink Real-Time is:

1 Navigate to the MathWorks download page:

www.mathworks.com/downloads
2 Navigate to the page for the Simulink Real-Time software version that you want. Download the

software version to your development computer.
3 Install and integrate the new release software.

After updating Simulink Real-Time, to re-create your Simulink Real-Time target settings:

1 In the MATLAB Command Window, type slrtExplorer.
2 On the Targets Tree pane, select a target computer node.
3 Click the Target Configuration tab.
4 Click Change IP Address and select the IP Address and Netmask for communication method

between your development and target computer. For more information, see “Target Computer
Settings”. Click OK.

5 Click the Disconnected link, toggling it to Connected.
6 Repeat steps 2 through 5 for each target computer.
7 Build each model that you want to execute. In the Simulink Editor, on the Real-Time tab, click

Run on Target.

See Also

More About
• “Target Computer Settings”

External Websites
• www.mathworks.com/downloads
• www.speedgoat.com/knowledge-center

17 Troubleshooting

17-36

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads
https://www.speedgoat.com/knowledge-center

	Introduction
	Simulink Real-Time Product Description
	Speedgoat Target Computers and I/O Hardware

	Model Architectures
	FPGA Models
	Speedgoat FPGA Support with HDL Workflow Advisor
	Speedgoat Simulink-Programmable I/O Module Support
	Prepare for FPGA Workflow

	Interrupt Configuration

	Functional Mock-up Units and Simulink Real-Time
	Apply Functional Mock-up Units by Using Simulink Real-Time
	Compile Source Code for Functional Mock-up Units
	Configure Compiler Environment Variables
	Create the FMU File
	Implement the FMU Block in Model
	Compile FMU File That Contains Source Code

	Third-Party Calibration Support
	Calibrate Real-Time Application
	Prepare ASAP2 Data Description File
	Initial Setup
	Set Up Parameters
	Set Up Signals
	Set Up Lookup Tables
	Generate Data Description File

	Calibrate Parameters with Vector CANape
	Prepare Project
	Prepare Device
	Configure Signals and Parameters
	Measure Signals and Calibrate Parameters

	Vector CANape Limitations
	Troubleshoot Vector CANape Operation
	What This Issue Means
	Try This Workaround

	Calibrate Parameters with ETAS Inca
	Prepare Database
	Prepare Project
	Prepare Workspace
	Prepare Experiment
	Configure Signals and Parameters
	Measure Signals and Calibrate Parameters

	ETAS Inca Limitations
	Troubleshoot ETAS Inca Operation
	What This Issue Means
	Try This Workaround

	ASAM XIL API Support
	Install the Simulink Real-Time Support Package for ASAM XIL Standard
	Prerequisites for Using ASAM XIL API

	Classes and Methods of ASAM XIL API
	MAPort Class
	ECUMPort Class
	ECUCPort Class
	Capture Class
	CapturingFactory Class
	MAPORTFactory Class
	SignalFactory Class
	SignalGeneratoryFactory Class
	SignalGenerator Class

	Real-Time Application Setup
	Real-Time Application Environment
	Select Default Target Computer
	Select Default Target Computer
	Command-Line Interface and Target Computer
	Targets Object and Target Computers

	Set Up Target Computer Ethernet Connection
	Connect Ethernet Cables
	Configure Ethernet Address
	Related Ethernet Configuration Topics

	Target Computer Update, Reboot, and Startup Application
	Update Software
	Reboot Target Computer
	Select Startup Application

	Signals and Parameters
	Signal Monitoring Basics
	Monitor Signals by Using Simulink Real-Time Explorer
	Instrument a Stateflow Subsystem
	Animate Stateflow Charts with Simulink External Mode
	Signal Tracing Basics
	Export and Import Signals in Instrument by Using Simulink Real-Time Explorer
	Save Signals to Disk
	Get MATLAB Code for Signals

	Trace Signals by Using Simulink External Mode
	Set Up for External Mode Simulation
	Set Stop Time and Simulate

	Data Logging with Simulation Data Inspector (SDI)
	Parameter Tuning and Data Logging
	Trace or Log Data with the Simulation Data Inspector
	Set Up Model for Logging
	Set Up Simulation Data Inspector
	View Simulation Data

	External Mode Usage
	Signal Logging Basics
	How Application is Run Affects Signals Logged
	File Logging and Streaming Workflow

	Tune Parameters by Using Simulink Real-Time Explorer
	Set Up the Simulation Data Inspector
	View Initial Parameter Values
	Modify Parameter Values

	Tune Parameters by Using MATLAB Language
	Access Parameters by Using Application Object

	Tune Parameters by Using Simulink External Mode
	Tune Parameters by Using Block Diagram
	Tune Parameters by Using Hold Updates and Update All Parameters

	Save and Reload Parameters by Using the MATLAB Language
	Save Current Set of Real-Time Application Parameters
	Load Saved Parameters to Real-Time Application
	View or Edit Parameter Values in Parameter Set
	Add or Update Startup Parameter Set for Application

	Tunable Block Parameters and Tunable Global Parameters
	Tunable Parameters
	Inlined Parameters
	Tune Global Parameters by Using External Mode
	Tune Global Parameters by Using Simulink Real-Time Explorer
	Tune Global Parameters by Using MATLAB Language

	Tune Inlined Parameters by Using Simulink Real-Time Explorer
	Configure Model to Tune Inlined Parameters
	Initial Value
	Updated Value

	Tune Inlined Parameters by Using MATLAB Language
	Tune Inlined Parameter

	Tune Parameter Structures by Using Simulink Real-Time Explorer
	Create Parameter Structure
	Replace Block Parameters with Parameter Structure Fields
	Save and Load Parameter Structure
	Tune Parameters in a Parameter Structure

	Tune Parameter Structures by Using MATLAB Language
	Create Parameter Structure
	Save and Load Parameter Structure
	Replace Block Parameters with Parameter Structure Fields
	Tune Parameters in a Parameter Structure

	Define and Update Inport Data
	Required Files
	Map Inport to Use Square Wave
	Update Inport to Use Sawtooth Wave

	Define and Update Inport Data by Using MATLAB Language
	Required Files
	Map Inport to Use Square Wave
	Update Inport to Use Sawtooth Wave

	Stimulate Root Inport by Using MATLAB Language
	Inport Data Mapping Limitations
	Display and Filter Hierarchical Signals and Parameters
	Hierarchical Display
	Filtered Display
	Sorted Display

	Troubleshoot Signals Not Accessible by Name
	What This Issue Means
	Try This Workaround

	Troubleshoot Parameters Not Accessible by Name
	What This Issue Means
	Try This Workaround

	Troubleshoot Instance-Specific Parameters Not Saved
	What This Issue Means
	Try This Workaround

	Internationalization Issues

	Execution Modes
	Execution Modes

	Real-Time Application Execution
	Working with the Target Computer Command Line
	Control Real-Time Application at Target Computer Command Line
	Execute Target Computer RTOS Commands at Target Computer Command Line

	Tuning Performance
	CPU Overload
	Monitor CPU Overload Rate
	Execution Profiling for Real-Time Applications
	Reduce Build Time for Simulink Real-Time Referenced Models

	External Code Integration
	External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models
	Considerations for Integrating Third-Party Libraries and External Code into Simulink Real-Time
	Value of Upgrading Your C/C++ Code for Integration into Simulink Real-Time
	Approaches for C/C++ Code Integration into Simulink Real-Time
	Build Libraries from Source Code for Simulink Real-Time
	External Code Integration for S-Functions and Simulink Real-Time
	Hello World! Example External Code Integration for Simulink Real-Time
	Additional C/C++ Project for Simulink Real-Time

	Simulation Data Inspector
	View Data in the Simulation Data Inspector
	View Logged Data
	Import Data from the Workspace or a File
	View Complex Data
	View String Data
	View Frame-Based Data
	View Event-Based Data

	Import Data from a CSV File into the Simulation Data Inspector
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	Import Data from a CSV File

	Microsoft Excel Import, Export, and Logging Format
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	User-Defined Data Types
	Complex, Multidimensional, and Bus Signals
	Function-Call Signals
	Simulation Parameters
	Multiple Runs

	Configure the Simulation Data Inspector
	Logged Data Size and Location
	Archive Behavior and Run Limit
	Incoming Run Names and Location
	Signal Metadata to Display
	Signal Selection on the Inspect Pane
	How Signals Are Aligned for Comparison
	Colors Used to Display Comparison Results
	Signal Grouping
	Data to Stream from Parallel Simulations
	Options for Saving and Loading Session Files
	Signal Display Units

	How the Simulation Data Inspector Compares Data
	Signal Alignment
	Synchronization
	Interpolation
	Tolerance Specification
	Limitations

	Save and Share Simulation Data Inspector Data and Views
	Save and Load Simulation Data Inspector Sessions
	Share Simulation Data Inspector Views
	Share Simulation Data Inspector Plots
	Create a Simulation Data Inspector Report
	Export Data to the Workspace or a File
	Export Video Signal to an MP4 File

	Inspect and Compare Data Programmatically
	Create a Run and View the Data
	Compare Two Signals in the Same Run
	Compare Runs with Global Tolerance
	Analyze Simulation Data Using Signal Tolerances

	Limit the Size of Logged Data
	Limit the Number of Runs Retained in the Simulation Data Inspector Archive
	Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data
	View Data Only During Simulation
	Reduce the Number of Data Points Logged from Simulation

	Execution with MATLAB Scripts
	Real-Time Application Objects and Options in the MATLAB Interface
	Target and Application Objects
	Control Real-Time Application by Using Objects
	Use Real-Time Application Object Functions

	Simulink Real-Time Instruments and Instrument Panel Apps
	Add Instruments to Real-Time Application from Simulink Model
	Instrumentation Apps for Real-Time Applications
	Create App Designer Instrument Panels by Using App Generator
	Create App Designer Instrument Panels by Using Simulink Real-Time Components
	Create Standalone Instrument Panel App by Using Application Compiler

	Automated Test with Simulink Test
	Test Real-Time Application in Simulink Test

	Examples
	Simulink Real-Time Examples
	Parameter Tuning and Data Logging
	Tune Decimation for File Log Data Without Model Rebuild
	Concurrent Execution on Simulink® Real-Time™
	Add App Designer App to Inverted Pendulum Model
	Basic App Designer App for Real-Time Application Interface
	Connect Triggered Subsystem by Using Thread Trigger
	EtherCAT® Protocol with Beckhoff® Analog IO Slave Devices EL3062 and EL4002
	EtherCAT® Protocol with Beckhoff® Digital IO Slave Devices EL1004 and EL2004
	EtherCAT® Protocol Motor Velocity Control with Accelnet™ Drive
	EtherCAT® Protocol Motor Position Control with Accelnet™ Drive
	Generate ENI Files for EtherCAT® Devices
	EtherCAT® Protocol Detect Network Failure and Reset
	EtherCAT® Protocol Sequenced Writing SoE Slave Configuration Variables
	EtherCAT® Protocol Sequenced Writing CoE Slave Configuration Variables
	Simple ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)
	ASCII Encoding/Decoding Loopback Test
	ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)
	ASCII Encoding/Decoding Resync Loopback Test
	ASCII Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)
	Binary Encoding/Decoding Loopback Test
	Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)
	Binary Encoding/Decoding Resync Loopback Test
	Binary Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)
	Target to Development Computer Communication by Using TCP
	Target to Host Transmission by Using UDP
	Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks
	Apply Simulink Real-Time Model Template to Create Real-Time Application
	Insert Event into Execution Profiling Stream
	Control Real-Time Application by Using C# Code
	Run Real-Time Application by Using Python Script
	Hello World! Example External Code Integration for Simulink Real-Time
	Control Color of Lamp on Instrument Panel
	Configure Input and Output Ports for Bit Packing and Unpacking
	Run Real-Time Simulation of Permanent Magnet Synchronous Motor
	Apply Persistent Variables in Real-Time Applications

	Troubleshooting
	Troubleshooting Basics
	Troubleshoot Missing Real-Time Tab
	What This Issue Means
	Try This Workaround

	Troubleshoot Communication Failure Through Firewall (Windows)
	What This Issue Means
	Try These Workarounds

	Troubleshoot Cannot Load Shared Object on Target Computer
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional Signals
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Inport in Referenced Model
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Send and Receive Blocks
	What This Issue Means
	Try This Workaround

	Troubleshoot Signals for Streaming or File Logging
	What This Issue Means
	Try These Workarounds

	Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds
	What This Issue Means
	Try This Workaround

	Troubleshoot Model Links to Static Libraries or Shared Objects
	What This Issue Means
	Try This Workaround

	Troubleshoot Build Error for Accelerator Mode
	What This Issue Means
	Try This Workaround

	Troubleshoot Long Build Times for Real-Time Application
	What This Issue Means
	Try This Workaround

	Troubleshoot Working with Persistent Variables
	What This Issue Means
	Try This Workaround

	Troubleshoot Unsatisfactory Real-Time Performance
	What This Issue Means
	Try This Workaround

	Troubleshoot Overloaded CPU from Executing Real-Time Application
	What This Issue Means
	Try This Workaround

	Troubleshoot Gaps in Streamed Data
	What This Issue Means
	Try This Workaround

	Find Simulink Real-Time Support
	Install Simulink Real-Time Software Updates

